关联度分析

当前话题为您枚举了最新的 关联度分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

正交试验灰关联度分析法2007
灰关联法(GRA)是个挺有意思的工具,适合做正交试验的数据。简单来说,它能你找出每个因素对实验结果的关联度,进而优化实验条件。要是你不太懂交互作用的话,这个方法好用。通过 GRA,你可以快速识别出哪些因素在实验中最重要,优化起来就省时省力。其实,正交试验设计本身挺复杂,但有了 GRA 的辅助,起来就清晰多了。
Matlab灰色关联度算法源码下载
灰色关联度算法的基础代码可以在这里下载,适用于Matlab环境。灰色关联度分析是一种用于数据关联度分析的方法,通过模糊化处理实现数据之间的关联度量化。这份源码提供了实现灰色关联度分析的基本功能,适合需要进行数据关联分析的科研工作者和学生使用。
基于关联度分析的遗传算法研究及应用
基于关联度的遗传算法看起来挺有意思的,结合了遗传算法和关联规则挖掘,能在一些实际场景下发挥蛮大的作用。比如,银行卡系统中就能用来做客户信用度预测。这篇论文中提到的适应度函数,通过关联度来优化,效果还不错。如果你在做类似的数据挖掘任务,或者对遗传算法应用感兴趣,这篇论文可以给你不少启发。并且,文中也给出了具体的应用实例,做了功能上的展示,挺值得看看哦。你看完之后会对这类算法的实际应用有更清晰的了解。
支持度递减关联规则挖掘
支持度递减的关联规则,其实就是在数据挖掘里,咱们经常会碰到的一个小坑。支持度低的规则被直接忽略,但说不定它背后藏着的才是“冷门但关键”的信息。嗯,像用户稀有购买习惯、识别潜在欺诈行为,这招就挺好使。你要是做过关联规则挖掘,肯定绕不开Apriori和FP-Growth这俩老伙计。不过,想要支持度递减也跟得上,逻辑上就得动点脑子,比如动态调整阈值,或是搞个多层策略,这样才能把稀疏数据挖干净。有几个资源我觉得还不错,像这篇讲支持度递减的,思路清晰,代码也挺实用。还有讲支持度和可信度配合用的文章,这篇讲得也挺接地气。哦对,Hash Tree 那块优化技巧也推荐看看,挖掘效率提升还挺的。如果你想在项目里
关联分析.ppt
关联分析基本概念及购物篮分析 Apriori算法及FP树
基于兴趣度的关联规则在学术分析中的应用
在关联规则经典算法Apriori的基础上,分析并将其应用于学术分析系统。发现并解决了现有系统中的问题,通过增加兴趣度阈值提升了关联规则在数据挖掘中的准确性,有效减少了无效规则的生成,为学术选课系统的优化提供了重要支持。
关联规则度量:支持度和可信度
规则度量支持度和可信度可用于找出符合最小支持度和可信度条件的规则。 支持度衡量一次交易中同时包含规则中所有项的可能性。 可信度衡量在包含规则中前提项的交易中,结论项出现的条件概率。 例如,若最小支持度为 50%,最小可信度为 50%,则可能获得以下规则: A → C (支持度:50%,可信度:66.6%) C → A (支持度:50%,可信度:100%) 这意味着: 购买尿布的客户中有 50% 同时购买了啤酒。 购买尿布和啤酒的客户中有 66.6% 同时购买了啤酒。 购买啤酒的客户中有 50% 同时购买了尿布。 购买尿布和啤酒的客户中有 100% 同时购买了尿布。
关联规则支持度计算与Hash Tree优化
候选集的支持度计算,其实挺讲技巧的。候选集数量多到吓人,一笔交易能匹配好几个,这时候硬算不现实。用Hash Tree去组织这些候选集就方便多了——内部节点是哈希表,叶子节点挂着项集和支持度。查询的时候靠一个Subset函数,能一下找出交易中包含的所有候选集,效率还不错。适合大批量数据,逻辑也挺清晰。
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
灰色关联分析MATLAB程序
灰色关联分析MATLAB代码的计算方法参考文献包括王宁练的研究,探讨了冰川平衡线变化的主导气候因子。