核技巧
当前话题为您枚举了最新的核技巧。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
模糊核聚类算法实现
我创建了一个函数来实现模糊核聚类算法,用于多模型控制建模。尽管建模没有成功,但该聚类算法运行良好。
Matlab
10
2024-05-13
Matlab开发核方法工具箱
Matlab开发:核方法工具箱,专为非线性信号处理和机器学习而设计。
Matlab
13
2024-07-22
使用核密度估计绘制散点图
这个功能利用核平滑函数计算每个点的概率密度估计(PDE),并且用颜色表示每个点。输入x表示X轴上的位置,y表示Y轴上的位置。varargin可用于向scatter函数发送一组指令,支持MarkerSize参数,不支持MarkerColor参数。输出h返回创建的散点对象的句柄。例如,生成数据x = normrnd(10, 1, 1000, 1); y = x * 3 + normrnd(10, 1, 1000, 1); 使用scatter_kde(x, y, '填充', 'MarkerSize', 100); 添加颜色栏cb = colorbar(); cb.Label.String = '概率
Matlab
14
2024-08-13
多维数据判别分析非参核密度算法
针对传统判别算法对数据分布类型假定的局限,提出采用非参核密度算法建立多维数据的判别规则。该算法充分利用样本信息,显著提高判别精度,且不受分布假定的限制。
数据挖掘
11
2024-05-15
支持向量机SVM和核函数程序集
支持向量机的 MATLAB 程序集,用起来还挺顺手的,是你想搞清楚SVM怎么配合核函数来分类时。这套代码不仅把核心的数学部分实现得比较扎实,还顺带搭了个和K-means 聚类联动的示例,挺有意思的。
核函数的比较全面,像是常见的线性核、高斯核(也叫 RBF)、多项式核这些都有涉及。举个例子,高斯核主要是通过计算点之间的距离,让数据在高维里“变得可分”,这招在实际中还蛮常用的。
SVM-KMExample里有结合聚类做的训练例子,一开始用 K-means 做初步分簇,再把这些结果丢给 SVM 来分类。嗯,思路还挺实用的,适合数据前阶段试试。代码大多基于矩阵运算,用的是 MATLAB 擅长的那一套
Matlab
0
2025-06-14
使用Matlab开发去核细胞复胞膜共同基质
来自“Matlab应用开发”网络研讨会的幻灯片和演示文件介绍了如何使用Matlab开发去核细胞复胞膜共同基质。
Matlab
11
2024-08-23
10/100M以太网IP核模块
10/100M 以太网 IP 核的模块设计还挺清晰的,五个模块分工明确,包括了MAC、MII 管理、主机接口这些核心组件,拿来直接集成挺省事。速度上支持10 和 100Mbps,基本覆盖常见的以太网应用。你只需要外接个PHY 芯片,整套以太网通信就搞定了,挺适合做嵌入式或 FPGA 项目的。
Access
0
2025-06-17
支持向量机与其他基于核方法学习入门
支持向量机(SVM)是机器学习中一种用于分类和回归任务的监督学习模型。它通过在输入空间中寻找一个最优超平面来工作,该超平面将不同的类分离开来。
除了 SVM,其他基于核的学习方法包括:- 核主成分分析 (KPCA)- 核 Fisher 判别分析 (KFDA)- 核谱聚类 (KSC)- 核回归 (KSR)
这些方法在许多领域都有应用,包括图像处理、文本分类和生物信息学。
数据挖掘
13
2024-05-20
中核院三所人事管理系统
具备完善功能的友好人事管理软件,初始用户为 admin,密码为 1。
Access
17
2024-05-28
matlab自相关代码-全基因组核小体定位
matlab自相关代码-全基因组核小体定位工具集
该工具集可以用于计算一组基因的距离自相关函数以及两组基因的距离互相关函数。
核小体
核小体核心颗粒(NCP)是所有真核染色质的重复结构单元,由 146 个碱基对(bp)的 DNA 片段包裹在组蛋白八聚体周围,旋转速度为 1.65 超螺旋。组蛋白八聚体是两个组蛋白四聚体的同型二聚体,每个四聚体具有四个组蛋白(H2A,H2B,H3 和 H4)。
距离自相关(DAC)
此功能可以测量核小体的相对位置。对于每对 NCP 序列,首先计算 NCP 起始位置之间的距离。然后,将两条链的所有距离的出现相加。
距离互相关(DAC)
这用作比较两个不同核小体片段数
Matlab
20
2024-05-19