软聚类算法
当前话题为您枚举了最新的 软聚类算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于贝叶斯分类的聚类算法软聚类的新方法
介绍了一种新的软聚类算法,名为基于贝叶斯分类的聚类。该算法不需要随机初始化,而是利用本地度量来选择最佳的聚类数。通过最小化可以从软聚类分配中推导出的对数贝叶斯风险来执行聚类,这被视为聚类过程的优化目标函数。算法类似于期望最大化,最小化所提出的聚类功能。此外,该算法已实现CPU和GPU版本。
Matlab
11
2024-09-27
UTRA软切换算法中软切换概率与阈值的关系
这个简单的m文件描述了UTRA软切换算法中软切换概率与软切换阈值之间的函数关系。它通过计算启用软切换的小区面积与总小区面积的比率来推导这一关系。
Matlab
8
2024-09-28
聚类算法对比
该研究深入探讨了数据挖掘中的聚类算法,全面比较了各种算法的优点和局限性。
数据挖掘
16
2024-05-01
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
18
2024-05-25
聚类分析算法
该PPT简要介绍C均值聚类方法的原理和步骤,适合对C均值有初步了解的人员。若要深入学习,推荐参考谢中华老师的《MATLAB统计分析与应用》。
统计分析
11
2024-04-29
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
9
2024-07-17
数据聚类算法概述
数据挖掘是从海量数据中提取有价值信息的过程,而聚类算法是其核心方法之一。聚类通过将数据对象根据相似性分组形成不同的簇,使得同一簇内的对象相似度高,而不同簇的对象相异度大。深入探讨了四种常见的聚类算法:K-means、自组织映射(SOM)、主成分分析(PCA)和层次聚类(HC)。K-means通过迭代寻找数据点的中心来实现聚类;SOM通过竞争学习形成有序的二维“地图”;PCA通过线性变换降低数据维度;HC通过构建树形结构表示数据点间的相似性。每种算法都有其独特的适用场景和局限性。
数据挖掘
10
2024-07-18
OPTICS聚类算法MATLAB实现
这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
数据挖掘
17
2024-05-21
Matlab Kmean聚类算法优化
详细探讨了Matlab中Kmean和SLC聚类算法的应用,附带实验报告和结果图,帮助读者深入理解算法原理和实验结果。
Matlab
15
2024-07-19
OPTICS聚类算法Python实现
资源包含OPTICS聚类算法的Python实现代码,此算法是对DBSCAN算法的优化改进。
算法与数据结构
12
2024-05-21