参数估计算法

当前话题为您枚举了最新的 参数估计算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
MATLAB开发混合时变参数系统的参数估计算法
使用范数正则化和期望最大化技术,介绍了在MATLAB环境下开发的SON-EM算法,用于混合时变参数系统的参数估计。
参数估计-matlab数据统计分析(参数估计)
正态总体参数估计 命令:normfit(X, alpha) 显著性水平alpha缺省为0.05 返回值: muhat:均值点估计值 sigmahat:标准差点估计值 muci:均值的区间估计 sigmaci:标准差的区间估计
其他分布参数估计
对于其他分布参数估计,可以采用两种方法:1. 当样本容量充分大时(n>50),根据中心极限定理,近似服从正态分布。2. 使用 MATLAB 工具箱中提供的特定分布函数进行估计:- [muhat, muci] = expfit(X,alpha):在显著性水平 alpha 下,计算指数分布数据 X 的均值的点估计和区间估计。- [lambdahat, lambdaci] = poissfit(X,alpha):在显著性水平 alpha 下,计算泊松分布数据 X 的参数的点估计和区间估计。- [phat, pci] = weibfit(X,alpha):在显著性水平 alpha 下,计算 Weibu
EM算法在GMM参数估计中的应用
高斯混合模型的参数估计通常使用期望最大化(EM)算法,这在matlab环境下尤为常见。
参数估计方法深度解析
专为医学生、临床医生和公共卫生医师打造的卫生统计学第八版学习资料,深入讲解参数估计的各种方法,助力提升统计学分析能力。
可转债价值非参数估计2007
非参数估计的可转债,嗯,这个资源挺有料的。文章是 2007 年的,虽然不新,但讲得还挺实在。用了核密度估计这招,专门可转债的价值——比如像华菱转债这种带转股条款的,估值起来真不容易。作者不是靠传统金融模型那一套,而是走了统计这条路,看得出来还挺注重实证。你要是做前端的,刚好对金融数据可视化感兴趣,这篇值得一看,数据+方法一应俱全。
EM算法求解威布尔分布参数估计优化方法
混合模型的参数估计一直挺烧脑,是用两参数的威布尔分布搞多重混合的时候。不过最近翻到一份资源,讲的是怎么用EM 算法来做这事,而且还改进了一下,挺有意思。 开头先整了个以最大似然为目标的优化模型,主打就是求解两个威布尔分布叠加时的参数。原始 EM 算法你也懂,收敛慢,初始化还老是翻车,这里用贝叶斯随机分类来初始化参数,效果还不错,稳定多了。 最大化那一步呢,不再死磕解析解,而是用了径向基函数插值。这种方式对求解超越方程组挺友好,尤其是参数一多的时候,效率比传统方式高多了。而且文档里还贴了个实际案例,手把手教你怎么做估计,连公式都配好了。 如果你在搞寿命建模、可靠性,或者任何涉及混合分布的东西,这
参数估计方法比较与分析
第六章参数估计习题6.1中,对三种统计量进行了无偏性验证和有效性比较,结论是它们均为总体均值µ的无偏估计。然而,仅有第一种估计在方差存在时表现出较差的有效性。此外,讨论了参数θ的无偏估计性质及其在方差条件下的影响。
MATLAB中的参数估计方法
参数估计可以通过矩法和最大似然法来进行点估计。使用MLE函数进行常见分布的参数估计,实现了参数的区间估计。MATLAB统计工具箱提供了多种参数估计函数,详细内容请参考相关文档。