种群智能

当前话题为您枚举了最新的 种群智能。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

多种群遗传算法
###多种群遗传算法详解####一、引言遗传算法(Genetic Algorithm, GA)是一种模拟生物进化过程的优化搜索算法,它通过模拟自然选择和遗传机制来求解最优化问题。多种群遗传算法是遗传算法的一个扩展版本,它通过维护多个独立的种群来进行并行搜索,从而提高全局最优解的搜索能力。本文将详细介绍多种群遗传算法的工作原理,并结合提供的代码示例进行解析。 ####二、多种群遗传算法基本概念在深入讨论之前,我们先了解几个关键概念: 1. **种群(Population)**:由多个个体组成的集合,每个个体都代表了问题的一个可能解决方案。 2. **个体(Individual/Chromosom
MPGA多种群遗传算法
多种群的遗传算法写得挺完整的,结构也清晰,适合做函数优化的参考代码包。压缩包里的几个.m文件分工明确,像MPGA.m负责总控流程,SGA.m单独演示了基础遗传逻辑,方便你一步步看明白。整体风格比较 MATLAB 范儿,用起来也比较直观。 MPGA 的多种群机制挺有意思,每个种群自己进化,偶尔来点“移民”,能有效跳出局部最优。immigrant.m就是搞这个事的,让不同群体之间互通有无,增加多样性。 还有一个点不错,精英保留机制。在EliteInduvidual.m里会保留每代表现个体,思路比较实用,尤其是你不想每次跑出来结果都差不多的时候。 运行MPGA.m后,你可以观察算法如何收敛,用来测试
天山云杉林种群分布格局研究
新疆天山云杉林中,不同发育阶段的云杉种群表现为衰退型,其中大树密度最大。种群分布格局受尺度影响,各阶段均呈聚集分布,且小树聚集强度最高。
动态种群策略辅助粒子群优化
动态种群策略辅助粒子群优化算法是一种基于粒子群优化算法的改进算法。该算法通过引入动态种群策略,可以有效地平衡种群的多样性和收敛性,从而提高算法的寻优能力。
Matlab图形生成代码原生鱼种群模型的空间管理
Matlab的无花果生成代码protogynous_spatial_model用于通过空间管理(包括海洋保护区和捕捞)实现原生鱼种群模型。引文来自Eastern EE和White JW的研究,探讨了雌性变性鱼在沿海系统中的空间管理框架。代码以Matlab .m文件形式存在,并兼容版本2015a。文件包括生物学参数(LifeHistory_Params.m)、海景参数(Spatial_Params.m)、计算终生卵产量的FLEP等功能(Gonochore_F_FLEP.m)、捕捞死亡率计算(Find_F.m)、种群动态模型实现(Spatial_Model.m)、以及人口持久性计算所需的最小储量功
多种群遗传算法在函数优化中的应用
多种群遗传算法在函数优化中扮演着重要角色,将详细探讨其原理、优势以及实际应用,同时提供相关代码和教程。
基于改善初始种群的免疫遗传算法优化问题JSP研究
上传了一篇关于免疫遗传算法在JSP优化问题中的文档,供大家学习。最近在研究免疫优化智能算法的应用。
智能排名
利用人工智能技术,对内容或数据进行自动排序,提升信息的查找和呈现效率。
遗传算法MATLAB初始化种群代码——HP模型蛋白质折叠
在MAI的CI主题背景下开发的项目,解决蛋白质折叠问题,应对自回避路径约束下的优化挑战,并利用MATLAB的optimtool支持代码执行。其主要功能包括:能量函数利用构象指标测量填充正方形空间中每个H氨基酸邻居的能量;初始化阶段有两种实现方式:随机线圈和完全扩展,前者尝试从随机排序的可能方向进行选择,后者则使用所有构象的's';突变阶段随机选择可能的变异,并通过调用acceptance函数实现之前描述的决策;交叉阶段仅实施1点交叉,并要求接受。代码结构随时间演化温度,加速程序。
指定创建初始种群的函数-遗传算法工具箱详细介绍
指定创建初始种群的函数是遗传算法中的关键组件。它用于生成满足特定条件的初始种群,确保算法的多样性和搜索效率。该函数通常接收种群大小和个体特征等参数,以随机或特定方式生成个体,从而开始遗传进化过程。