灰关联挖掘

当前话题为您枚举了最新的灰关联挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于灰关联挖掘的铝电解控制算法
文章提出一种适用于铝电解工业控制的灰关联度挖掘框架,并设计了Gray-CT L挖掘算法。该算法将计算灰关联度和挖掘灰关联规则分为两个独立部分,通过对电解槽生产数据进行分析,获得了影响温度的因素。
正交试验灰关联度分析法2007
灰关联法(GRA)是个挺有意思的工具,适合做正交试验的数据。简单来说,它能你找出每个因素对实验结果的关联度,进而优化实验条件。要是你不太懂交互作用的话,这个方法好用。通过 GRA,你可以快速识别出哪些因素在实验中最重要,优化起来就省时省力。其实,正交试验设计本身挺复杂,但有了 GRA 的辅助,起来就清晰多了。
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如: 牛奶 → 面包 [20%, 60%] 酸奶 → 黄面包 [6%, 50%]
多层关联冗余过滤关联规则挖掘
多层关联规则里的冗余问题,挺让人头疼的,尤其是在数据量大的时候。冗余过滤就是个不错的工具,能帮你把“祖先关系”导致的重复规则过滤掉,逻辑清爽不少。用在那种需要分层挖掘的场景,比如商品分类、用户行为,效果还蛮的。 多层结构的数据,比如商品分“食品-零食-饼干”这几级,多时候你会挖出一堆类似的规则。其实上层已经有了,下层再出来一条,就是冗余。靠人工一个个过?太费劲。用这个过滤方案,效率高不少。 Apriori这种算法你肯定用过吧?配合这类过滤机制一起用,能大大提升输出规则的质量。不只是多,更重要的是准。有些规则看着热闹,其实一点价值都没有,这一步能帮你把水分滤掉。 顺带一提,想深入挖的话,可以看看
基于灰关联规则的回转窑火焰图像检索方案 (2008)
将数据挖掘中的灰关联分析 引入 基于内容的图像检索 中,提出一种基于灰关联度的回转窑火焰图像的检索方法。通过分析火焰图像特征值,并结合生产运行数据挖掘得到关联规则;应用灰关联度作为加权因子计算被检索图像与数据库中图像的相似度,从而得到一系列相近检索结果;根据用户的相关反馈,查询得到更优结果;设计和实现了检索系统的原型机,并应用从某氧化铝厂采集的图像和生产数据进行图像检索实验。实验结果表明:该方法能够较快而有效地从图像数据库中检索得到较满意的结果。**
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
关联规则挖掘路线图-数据挖掘概念、技术--关联1
关联规则挖掘包括布尔与定量关联(基于数据类型处理)。例如:buys(x, “SQLServer”) ^ buys(x, “DMBook”) -> buys(x, “DBMiner”) [0.2%, 60%]。此外,还有单维与多维关联,单层与多层分析。例如:age(x, “30..39”) ^ income(x, “42..48K”) -> buys(x, “PC”) [1%, 75%]。进一步的扩展涉及相关性和因果分析。需要注意的是,关联并不一定意味着因果关系。还有最大模式和闭合相集的概念,以及如“小东西”销售促发“大家伙”买卖的添加约束。
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。