视频量化

当前话题为您枚举了最新的 视频量化。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

简化YAP/TAZ量化YAP/TAZ量化应用的MATLAB开发
YAP/TAZ量化应用的介绍。指导用户完成一个简单的步骤来分析和计算。
使用0.25量化间隔创建的量化模型 - MATLAB开发
这个量化模型是通过使用0.25的量化间隔来设计Quantizer模块实现的。输入是幅度为1、频率为0.25Hz的正弦波,并且输入和输出结果都在示波器上显示。
量化研究策略学习(2)
可自定义Mat缓存文件的存储路径,选择当前路径或全局路径。全局缓存路径需在FactorBaseCfg.xml中设置,默认为QIA安装路径。支持按日或按周回购的枚举。系统根据设定获取债券的杠杆费用。若交易代码列表不包含特定债券标的,该属性可忽略。
量化金融面试实用指南
高清量化金融面试实用指南
国内外量化交易研究现状分析
1.2 国内外研究现状 1.2.1 国外研究现状 国外有关量化交易的研究内容非常广阔,这里主要选取公开出版的著作进行讨论。斯坦福大学华人统计学家黎子良从理论研究的角度讲述了数量金融中最重要的统计模型和方法,通过统计建模与统计决策的理论,将复杂的金融理论与投资实务相结合,具有深刻的理论意义和借鉴价值。Richard Tortoriello归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量及危险信号,给出了如何有效结合单个投资因子或组件因子,构建多因子策略,从而形成更全面的选股模型。金斯伯格详细阐述了基于MATLAB软件的量化投资技术,特别是对三大类金融工具箱的介绍,具有良好的实
保持矢量化优化功能的矢量化版本开发 - MATLAB应用
VHOLD(multiax, onoff)用于设置多轴保持状态。 VHOLD(multiax, onoff)是函数hold的优化版本,利用句柄在矩阵中设置多个轴对象的状态multiax,并根据提供的onoff状态。参数onoff可以是字符串'on'或'off',将所有轴设置为相同的保持状态,或者是单元矩阵,以便各个轴可以设置为不同的状态。请注意,当onoff为单元矩阵时,矩阵multiax和单元矩阵onoff应具有相同的大小,即size(multiax)应等于size(onoff)。使用示例:VHOLD(多轴,开关)输入multiax =轴对象的句柄矩阵= [ax11,ax12,...,ax1
Python量化交易-NumPy应用详解
在Python的领域中,量化交易是金融领域的热门话题之一,而NumPy作为“三剑客”之一,在此中扮演着至关重要的角色。NumPy作为Python科学计算的核心库,提供了高效的多维数组对象和一系列处理工具。深入探讨了NumPy在量化交易中的应用,重点介绍了其数组对象ndarray的特性和在时间序列数据处理、统计分析、线性代数运算以及条件操作中的实际应用。此外,结合Pandas、Matplotlib和SciPy等库,展示了如何构建强大的量化交易平台。
Mahout与Python量化交易实战
融合Mahout与Python,探索量化交易策略 本书深入探讨Mahout在大数据领域的应用,并结合Python编程语言,引导读者构建量化交易策略。内容涵盖: Mahout核心算法解析:推荐系统、聚类分析、分类算法等 Python数据分析工具:NumPy、Pandas、Matplotlib等 量化交易策略设计:技术指标分析、回测框架搭建 实战案例分析:股票市场、数字货币市场等 通过学习本书,读者将掌握运用Mahout和Python进行数据分析和量化交易的技能,为投资决策提供有力支持。
数据挖掘助推量化投资
利用数据挖掘技术,挖掘数据背后的价值,为量化投资提供科学依据和策略支撑。
基于矢量化的压缩感知OMP算法
OMP算法的基本思想是从字典矩阵D(也称为过完备原子库)中选择与信号y最匹配的原子(即某列),构建稀疏逼近。然后将剩余残差减去所有已选择的原子组成的矩阵在空间上的正交投影,得到下一步的信号残差。随后,继续选择与信号残差最匹配的原子,反复迭代。信号y可以由这些原子的线性和,加上最后的残差值来表示。如果残差值在可以忽略的范围内,则信号y即为这些原子的线性组合。OMP分解过程实际上是依次对所选原子进行Schmidt正交化,然后将待分解信号减去在正交化后的原子上的各自分量,即可得到残差。