快速算法
当前话题为您枚举了最新的 快速算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
ButterflyLab - 快速算法
ButterflyLab软件包为(分层)互补低秩矩阵提供近乎最优的快速matvec和密集线性系统求解器。这些矩阵在傅立叶积分算子、成像方法、谐波分析等领域有广泛应用。
Matlab
17
2024-05-23
3D DCT 快速算法及其视频压缩应用——Matlab开发
2D离散余弦变换(2D-DCT)作为广泛应用的图像压缩算法,其背后的逻辑是JPEG压缩的基础。随着技术的发展,我们可以将DCT扩展到视频等3D矩阵上。在这个项目中,我们重新实现了关于3D DCT的快速算法及其逆算法——3D IDCT [1],并介绍了其在Matlab中的开发过程。
Matlab
14
2024-08-01
快速算法应用于数据挖掘中的关联规则技术
关联规则作为数据挖掘的主要形式之一,其主要目的在于发现未知的规则。快速算法能够显著提升其计算效率和准确性,使其在实际应用中更加可靠和高效。
数据挖掘
8
2024-07-16
使用PUROR技术进行相位展开一种快速算法探索
Liu J.和Drangova M.提出了一种新的相位展开方法,名为递归正交参考(PUROR),通过干预技术实现多维医学磁共振成像的精确相位展开。他们在其研究中详细描述了PUROR算法的应用和优势,发表于《医学磁共振》杂志的第68卷第4期,页面范围为1303-1316,发表于2012年。
Matlab
11
2024-09-21
MATLAB中的Anderson加速算法实现及应用
介绍了MATLAB中实现的Anderson加速算法(AA),该算法在迭代法优化中的应用,以及如何通过Python接口进行使用和测试。Anderson加速算法通过引入记忆项显著加速收敛速度,特别适用于高维问题。详细的安装和调用方法也在文中进行了说明。
Matlab
10
2024-08-25
MATLAB并行计算与GPU加速算法优化
在 MATLAB 开发中,想要让算法跑得更快?那就试试并行计算和 GPU 加速吧!这两个工具能你在海量数据和复杂计算时大幅提升效率。MATLAB 的并行计算工具箱支持多核 CPU 和 GPU 的并行,轻松将大任务拆成小任务,快速完成计算。比如,使用parfor替代传统的for循环,代码能在多个进程间并行运行,大大节省时间。而 GPU 加速则是通过 CUDA 编程,直接利用显卡的计算能力,适合大规模的数值计算,尤其是复杂的矩阵运算,速度快。至于提到的SDOAN,是某些特定算法或方法的缩写,具体细节还得根据你的需求去查找。而DontAccelerate,有时候指的是禁用加速的选项,比如遇到复杂的自
Matlab
0
2025-06-10
快速平滑算法实现
该项目实现了三种平滑去噪算法,分别是:
三角平滑去噪算法
矩形平滑去噪算法
伪高斯平滑去噪算法
算法与数据结构
20
2024-05-15
详解快速幂算法
快速幂算法是一种高效的计算幂运算的算法。它通过将指数进行二进制拆分,利用指数的二进制表示形式来减少乘法和幂运算的次数,从而提高了计算速度。算法的时间复杂度可达O(logn),远优于朴素的O(n)算法,效率显著提升。核心思想是将指数n转换为二进制形式,从最低位开始逐位处理:若当前位为1,则将底数乘以自身的平方(或之前得到的结果);若当前位为0,则进行平方操作。每处理完一位后,指数右移一位(相当于除以2),直到指数为0。最终结果即为所求的幂运算结果。算法利用了指数的二进制表示形式,通过不断平方和乘法的组合,将原本需要n次乘法的幂运算转化为logn次乘法,大幅提高了计算效率。同时,每次乘法都基于之前
算法与数据结构
15
2024-07-15
FISTA快速迭代算法
快速迭代算法里的 FISTA,用来图像去模糊这种线性逆问题还挺给力的。它是在经典的 ISTA 基础上优化出来的,速度快了好几个级别,但实现方式没变复杂,写起来还是挺顺手的。尤其大数据或者那种密集矩阵,响应也快,效果也靠谱。
FISTA 算法的亮点,一个字:快。相比经典的ISTA,FISTA 多了个“加速器”机制,用了个两步迭代的思路,收敛速度拉满,不管是做图像去模糊还是信号恢复,结果都挺不错的。
简单点说,原来Ax=b+w这种问题,直接求解挺麻烦的。FISTA 不走传统路,直接通过最优梯度+阈值压缩搞定,计算也不复杂,Python 或 Matlab 上都好上手。想在小波变换后图像?它还挺适配的
算法与数据结构
0
2025-06-18
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
算法与数据结构
14
2024-04-30