不确定数据

当前话题为您枚举了最新的 不确定数据。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

探索不确定数据挖掘技术
数据挖掘的一个分支是处理不确定和概率数据的建模、查询和挖掘。
优化不确定数据集频繁模式挖掘的近似算法
为了提升在不确定数据集上频繁模式挖掘的效率,针对现有算法在判断是否需要创建子头表时计算量较大的问题,提出了近似挖掘策略AAT-Mine。该策略在损失少量频繁项集的基础上,显著提高了整体算法的挖掘效率。实验采用三个典型数据集对算法进行了测试,并与目前最优算法及典型算法进行了性能对比,结果表明AAT-Mine在时空效率上均有显著提升。
Matlab_开发_绘制不确定度的方法
在Matlab中,errorshade是一种细微的绘制不确定度的方法,可以有效地展示数据的不确定性和变化范围。使用该方法,用户能够更直观地理解数据的波动性。
基于加权不确定图数据的高效紧密子图挖掘算法
研究不确定图数据中的紧密子图挖掘问题,利用加权不确定图模型,以子图期望密度和顶点期望度数度量紧密程度。算法基于贪心迭代,优化执行过程,保证结果达到2近似比,并且确保高效率和正确性。研究还证明了带顶点限制的紧密子图挖掘问题的NP难度,该算法相比其他方法更快速高效。
MATLAB中使用ECC代码鲁棒规划和不确定性数据
该存储库包含了在2019年欧洲控制会议(ECC)上发表的论文“在机会受限的轨迹规划中使用不确定性数据”的MATLAB源代码。为了重现的模拟和绘图,请在case_study文件夹中导航并运行generatePlotsCaseStudy MATLAB函数。此函数将运行所有必要的模拟并生成所有图表,同时也将以TikZ格式保存在plots文件夹下,以便轻松地包含在LaTeX文档中。任何使用此代码的引用,请务必引用原始论文。
决策分析方法:驾驭不确定性,优化决策
科学决策的基石是合理的决策分析方法。决策分析作为一种系统性的分析方法,专门用于研究不确定性问题。其核心目标是改进决策过程,从众多备选方案中筛选出最佳方案,以实现特定目标。 针对不同的决策情境,我们可以采用不同的决策分析方法: 确定性情形 不确定性情形 随机性情形 多目标情形 多人决策情形
不确定性空间数据挖掘算法模型的应用
不确定性空间数据挖掘算法模型在实际应用中展现出其独特的价值和效果。
贝叶斯法则的应用和预测不确定性
1969年,J.理查德·戈特三世在攻读普林斯顿大学天体物理博士学位之前,他前往欧洲旅行。他目睹了柏林墙,这是8年前建成的,成为冷战象征。站在墙下,他开始思考它将继续分隔东德和西德多久。尽管预测只依赖一个数据点,面对地缘政治的不可预测性,这看似荒谬。然而,我们总是在需要时作出这些预测。例如,你站在外国城市的公共汽车站,其他游客等候已经7分钟。你如何预测下一班车的到达时间是否值得继续等待?彼得·诺维德谷歌研究部主任在他的“数据的不合理有效性”演讲中深入探讨了这个问题。贝叶斯法则作为概率论的一个关键概念,提供了一种方法来更新对假设的信念,特别是在处理不确定性和不完整性问题时非常有效。
应对不确定性的配电网互补优化MATLAB代码下载
随着随机可再生能源的增加,运营灵活性的需求也在增加。现有的灵活性采购方案设想了供电系统运营商(TSO)和配电系统运营商(DSO)之间的灵活资源互访。我们提出了一种日前协调方法,称为互补模型,用于共享灵活资源。该方法优化了TSO和DSO之间的物理接口处的价格和容量限制,即“协调变量”。DSO通过限制其投标数量来预先确认DSO级别资源在日前市场的参与,以确保其系统约束条件得到满足。我们采用多段Benders分解方法对模型进行了计算可行性的追求。提供了MATLAB代码的开源下载。
MATLAB二次拟合代码——不确定性维护工作存储库
随着出版物相关代码的不确定性维护和使用,此存储库包含MATLAB m文件代码,用于收集和分析数据。每个文件夹都有一个README文件,详细说明其内容。数据文件(csv文件)和模型拟合所需的数据文件(mat文件)位于data/文件夹。helper_functions/文件夹包含用于拟合、绘制和处理数据的各种函数。models/文件夹包含适合模型的功能。analysis_scripts.m文件提供了收集、拟合数据以及分析模型拟合和生成图形的示例代码。