次要道路

当前话题为您枚举了最新的次要道路。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

次要道路交通流量重要性评估方法:DFT Matlab 源代码
次要道路交通流量重要性评估方法:DFT Matlab 源代码 该方法基于交通流量估算次要道路的重要性,源自 Morley, DW 和 Gulliver, J. 发表在《环境污染》(2016)上的文章“改善次要道路上的交通流量和噪声暴露估计的方法”。其主要目标是改进居住区居民噪声暴露估计。由于主要道路交通流量数据较为完善,而次要道路的交通流量常被视为固定值,这导致噪声预测的准确性受到影响。 本方法利用网络路由(类似 SatNav 应用程序)确定道路网络中最常用的次要道路,并分配相应的重要性指数,从而将其与交通流量水平相关联。所有工具和数据均可获取。分析基于 OpenStreetMap 地理数据和
HDFS次要名称节点图示
HDFS次要名称节点图示, nn2节点的功能,以及其操作原理。
道路安全驾驶预警系统 DSA 简介
电子狗 DSA 通过预警播报为机动车驾驶员提供道路安全驾驶信息,帮助驾驶员避免罚款。
城市道路交通状态实时判别技术
该技术基于GPS,可实时判断城市道路交通状态。
辽宁省 2014-2022 各级道路矢量数据
此数据集包含 2014 年至 2022 年辽宁省各级道路矢量数据。数据覆盖时间长,丰富程度逐年提升,道路要素分为道路和铁路两个图层,道路等级细致,包含高速公路、国道、省道、市道、乡道、县道以及人行道和自行车道。
海南省乡道级道路矢量数据
该数据包含16种道路数据类型,涵盖了城市道路、行政等级道路以及OSM来源道路等多个方面,数据丰富,可为相关研究和应用提供参考。 数据类型: 城市道路:城市一级道路、城市二级道路、城市三级道路、城市四级道路 行政等级道路:高速、国道、省道、县道、乡道 OSM来源道路: railways(铁路、轻轨、窄轨、地铁、有轨电车等) roads(主干道、次干道、支道、高速、人行道、住宅街道、自行车道等)
道路卡口数据分析研究
随着道路卡口数据的积累,数据挖掘在这一领域中扮演越来越重要的角色。
浙江省2014-2022年道路矢量数据
该数据集涵盖了浙江省2014年至2022年间的各级道路数据,并随时间推移不断优化,数据规模逐渐扩大。道路要素分为“各级道路”和“铁路”两个图层文件。其中,“各级道路”图层对道路进行了详细的分级,涵盖了从高速公路、国道到省道、市道、县道、乡道的各个等级,甚至包含了人行道和自行车道。
Matlab Otsu 算法代码实现的随机游走者道路检测
本项目基于 GK Siogkas 和 ES Dermatas 在 IEEE 智能交通系统交易中发表的论文“使用自动时空种子选择在不利条件下进行随机步行者单目道路检测” (DOI: 10.1109/TITS.2012.2223686) 实现了随机游走者道路检测算法。 Python 实现依赖: Python 3+ (在 Python 3.6 上测试) Miniconda / Python scikit-image (图像 I/O 和基本操作) NumPy (数组操作、索引和代码矢量化) Matplotlib (可视化) 关于该项目的创建和背后基本原理的评论,请参阅我在 LinkedIn 上
成都市道路数据的详细描述
成都市道路数据.zip是一个压缩包,内含丰富的交通信息,专注于成都市的公路网络。数据集包括国道、省道、铁路、公路、人行道以及特殊道路,如县道、九级路、都市高速路和地铁线路。这些数据对城市规划、交通分析、GIS应用和交通研究至关重要。国道信息可能包括编号、路线走向、长度和沿线服务设施。省道数据揭示城市与周边省市的交通联系。铁路数据涵盖火车线路和轨道交通信息。高速公路和都市高速路提供快速、高效通行条件。县道和乡镇道路连接城乡,评估农村交通可达性。行人道路关注城市步行环境,地铁数据包括线路图、站点位置和发车频率。通过GIS技术分析交通流量、拥堵情况和出行模式,为城市交通规划和管理提供科学依据。