实时流式ETL

当前话题为您枚举了最新的 实时流式ETL。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于流式大数据技术的金融业务风险实时监控
依托自主研发的“流立方”流式大数据实时处理平台,构建了金融业务风险实时监控产品体系,并提供相应的解决方案和服务。该体系已在银行、保险、证券、第三方支付、互联网金融、电商等领域得到广泛应用,并获得了传统金融机构和互联网金融行业的认可。
UCIS-etl框架ETL活动图
此活动图展示了UCIS-etl框架中的ETL流程步骤。
Storm 流式计算框架
Storm 是一种分布式、高容错的实时计算系统,适用于处理快速生成的海量数据流。其核心优势在于低延迟、高吞吐量以及易于扩展,广泛应用于实时数据分析、机器学习、风险控制等领域。
Spark2.x企业级大数据项目实战实时统计、离线分析与实时ETL全解析
本课程源于实际生产项目,所有代码在现网大数据集群上稳定运行,拒绝使用演示数据。课程详细覆盖了离线分析和实时分析的大多数应用场景,通过三个真实生产案例,深入探讨如何优雅地整合Hadoop、Spark、HBase、Kafka、Redis、MySQL等关键大数据技术,并实际应用于项目中。
flink流式表自定义StreamTableSource、RetractStreamSink
根据flink1.8官网文档实现了自定义StreamTableSource,并且输入流使用了kafkaStream,更贴近实际应用。官网文档内容简单且有漏洞,直接按照官网文档编写会导致运行失败。附件文档中的代码经过验证可以正常运行,同时实现了RetractStreamSink,供大家参考。
FastSparkStreaming 2.0Spark流式处理工具
快速业务开发时的救星就是这个 FastSparkStreaming-2.0.jar。支持Kafka和Spark Streaming结合,两种比较实用的plan 设计模式:缓存模式和窗口模式,对不同场景都挺友好。 缓存模式的逻辑比较直白:结果直接丢进Kafka,不玩窗口那一套,适合对实时性要求高但不追求批间状态的场景。比如日志收集系统,落一波 Kafka 就完事儿。 窗口模式就偏复杂点了,适合需要对数据做窗口聚合或的需求,比如 10 分钟交易统计啥的。这种模式不持久化中间批次结果,轻量一些,资源占用也小,蛮适合日常数据类任务。 要注意的是两种模式不能混着用,选哪个看你业务需求。文档和代码都在作者
高效ETL工具代码
这是一个工具,用于从一个数据库完全迁移到另一个数据库,要求两个库的表结构必须完全一致。用户只需在外部配置文件中设置好数据库连接和需要抽取的表,即可开始数据抽取操作。
kettle使用kafka cosumber控件进行流式消息消费
Kettle,即水壶,是一个ETL工具集,允许用户通过图形化界面管理来自不同数据库的数据。最新版本中加入了kafka cosumber控件,使其能够支持流式消息消费,主程序员MATT希望通过这一功能,将各种数据以指定格式高效流出。
ETL 工具架构解析
ETL 工具架构解析 ETL 工具通常采用模块化架构,以便于灵活配置和扩展。其核心组件包括: 数据抽取模块: 负责从各种数据源获取数据,支持数据库、文件、API 等多种连接方式。 数据转换模块: 提供丰富的数据清洗、转换功能,例如数据类型转换、去重、聚合、格式化等。 数据加载模块: 将转换后的数据加载至目标数据仓库或数据湖,支持多种数据写入模式。 除了核心组件外,ETL 工具还提供元数据管理、任务调度、日志监控等辅助功能,以提升数据处理效率和可靠性。
ETL线的定义
ETL线指的是从数据提取(Extract)到数据转换(Transform)再到数据加载(Load)的过程中所使用的数据传输线路。在数据处理中,ETL线起着连接不同数据源并进行有效数据转换的关键作用。