John D'Errico

当前话题为您枚举了最新的 John D'Errico。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Design and Analysis of Experiments with R John Lawson
实验设计的套路搞不清楚?John Lawson的《Design and Analysis of Experiments with R》就挺好用的,逻辑清晰,案例也实在。不光教你怎么设计实验,还顺手把数据收集、、解释一条龙给讲了,感觉像带你打了一遍副本,清清爽爽。 整本书比较接地气,不绕弯子,讲设计原理时就配上了 R 代码,像lm()、aov()这些用得顺手,搭配自己的数据直接上手,效率还蛮高。适合做 AB 测试、农业试验、工艺流程优化这种场景。 我当时用这本书做一个营销实验,设计方案、方差、事后检验全靠它搞定,R 的代码贴心到位,还不复杂。你要是以前只接触过方差表,不知道怎么搭建设计模型,这本
数据科学基础John Hopcoft的图灵奖专著
本书详细探讨了数据科学中的关键概念,包括高维空间、最佳拟合子空间、奇异值分解、随机图、随机漫游与马尔科夫链、VC维、聚类、主题模型、隐传播马尔科夫过程、图模型和信度传播。
John Wiley and Sons PHP5 and MySQL Bible eBook PDF
详细描述资源,增加推荐机会,提升下载积分获取。
imshow3D MATLAB 3D图像贴图工具
以imshow3D开头的图像展示工具,还挺适合想搞点 3D 花活的你。它跟imshow()差不多用法,但可以把图像贴到球体、圆柱体或者你自己定义的形状上。嗯,是那种真的贴上去,不是 PPT 上的“拟物效果”。默认是贴在一个圆柱体上,但你也可以自己传x, y, z坐标或者一个半径函数,来生成像圆锥、球体这种自定义表面。代码也不复杂,响应还快,配合colormap还能调出各种风格,热力图那种效果也有。举个例子:I = peaks(); imshow3D(I,'shape','sphere','colmap',hot(256)); 这样图像就能包裹在一个热热的球体上了,视觉效果直接。你也可以自己写个
D3 文档
关于 D3 的中文指南
cooc3d 3D纹理特征提取算法
3D 图像的 Haralick 特征提取,cooc3d 这个 MATLAB 小工具还挺方便的。它能把传统的 2D 纹理算法扩展到三维,直接帮你搞定共生矩阵那一套。你只要给它一份 3D 图像的灰度矩阵,它就能输出一堆纹理特征,像什么对比度、同质性这些,做分类、识别都挺好用。 cooc3d.m是主力函数,逻辑清晰,注释也不少。读取 3D 图像、计算共生矩阵、提取 Haralick 特征,全流程一条龙。你可以直接扔进自己的图像流程里,比如医疗 CT、地质勘探建模这些都挺适配。 用法也不复杂,cooc3d 了一些demo 数据和测试脚本,基本上照着跑一遍就能懂。如果你熟 MATLAB,应该几分钟就能上
1D AEM反演的Matlab Trans-D代码示例
用于1D AEM(或任何1D模型)反演的Matlab Trans-D代码示例,运行仅需在Matlab路径中包含/ include目录和子目录,按照编号顺序运行命名脚本。基于Blatter等人(2018)和Ray等人(2013,2012)的工作,来自机载瞬态电磁数据的跨维贝叶斯反演泰勒冰川。
PlotClusters Function for Visualizing Clusters in 2D or 3D Using MATLAB
The PlotClusters function is used for visualizing clustering data, such as the output from k-means, in 2D or 3D. The inputs include: Data: An m×d matrix, where m is the number of data points and d is the number of dimensions. IDX: An m×1 vector that associates each data point with a cluster. Optio
从3D体积图像中生成2D图像将3D图像文件按蒙版切片为2D图像
这对于处理时需要将3D图像转换为2D图像进行配准的情况非常有用,例如基于地标的薄板样条方法。
RRT_Star_Algorithm 2D and 3D Path Planning Applications
《RRT_Star算法在三维与二维路径规划中的应用》RRT(Rapidly-exploring Random Trees)算法是一种用于复杂环境中寻找机器人路径的有效方法,属于概率道路规划的一种。其核心思想是通过随机生成树节点并逐步扩展树来探索配置空间,找到从起点到目标点的可行路径。在此基础上,RRT*(RRT Star)进一步优化,确保路径逐渐收敛到最优解。 本压缩包“RRT_Star_Algorithm.zip”包含RRT算法在三维和二维环境下的实现,提供了在MATLAB平台上的源代码,用户可根据需求进行修改。MATLAB因其强大的可视化功能*,非常适合进行路径规划仿真。 2D环境中的RR