Flow Algorithm

当前话题为您枚举了最新的 Flow Algorithm。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Muscle Fascicle Tracking with Ultrasound-Flow Algorithm for Tracking Muscle Length Changes in MATLAB
此Matlab GUI演示了如何使用光流算法自动跟踪使用B型超声成像的人体内侧腓肠肌(MG)肌肉束。该算法利用仿射变换跟踪在初始帧中确定的肌肉束的端点。请在任何使用此算法的学术著作中引用以下手稿: Cronin, NJ, Carty, CP, Barrett, RS & Lichtwark G. (2011) 人体运动过程中腓肠肌内侧束长度的自动跟踪。应用生理学杂志。在新闻。doi:10.1152/japplphysiol.00530.2011 Gillett, J, Barrett, R & Lichtwark, G. (2011) 测量B型超声被动和主动肌束长度变化的自动跟踪算法的
RFM_TRAD_FLOW.csv 文件
该文件名为 RFM_TRAD_FLOW.csv
Matlab Nonlinear Solver for Multi-Phase Flow
在本示例中,Matlab代码实现了非线性求解器,用于模拟多Kong介质中的流动。代码使用牛顿-拉夫森法求解方程f(x) = 0,基本步骤如下: 初始化x0。 计算更新:x1 = x0 - f(x0) / f'(x0)。 构建矩阵形式:A = df1/dx1 ... dfN/dxN,b = -f1 ... -fN。 解线性方程Ax = b,更新x = x + alpha * dx(对于非阻尼情况,alpha = 1)。 计算残差|f + f'dx| / |f|,检查收敛性。
GraphMaxFlow_Algorithm_Overview
1. 构造有向图 使用以下代码创建带有节点和边的有向图: cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 6 6],[2 3 3 1 1 1 2 3],6,6); 此图包含8个节点和6条边。 2. 计算最大流 使用以下命令计算从第1个到第6个节点的最大流: [M,F,K] = graphmaxflow(cm,1,6); 3. 显示原始图结构 可视化原始有向图: h0 = view(biograph(cm,[], 'ShowWeights', 'on')); 4. 显示最大流矩阵图结构 可视化计算得到的最大流矩阵: h1 = view(biograph(F,[
Genetic Simulated Annealing Algorithm Based on Simulated Annealing Algorithm in GOAT Toolbox
本项目使用GOAT遗传工具箱完成基于模拟退火算法优化的遗传算法。通过将模拟退火算法引入遗传算法的优化过程,提升了算法在复杂问题求解中的效率。所有代码和函数都在GOAT工具箱中完成,并进行了详细注释,方便用户理解和修改。使用时,需要调用GOAT工具箱中的相关函数,确保在Matlab环境下正确运行。 Matlab编译环境使用说明: 下载并安装GOAT工具箱。 调用相关函数时,确保工具箱路径已配置。 运行代码前,检查代码中的所有依赖项。 根据需要调整优化算法的参数以适应不同的求解任务。
Implementing PCA Algorithm in MATLAB
本项目建立PCA模型,使得PCA算子可以在任意时刻应用。实现基于MATLAB的PCA算法。
Genetic Algorithm for TSP Optimization
遗传算法是一种模拟自然界生物进化过程的优化方法,广泛应用于解决复杂问题,如旅行商问题(TSP)。旅行商问题是一个经典的组合优化问题,目标是找到一个最短的路径,使得旅行商可以访问每个城市一次并返回起点。在这个问题中,遗传算法通过模拟种群进化、选择、交叉和变异等生物过程来寻找最优解。\\在\"遗传算法解决TSP\"的MATLAB程序设计中,我们可以分解这个问题的关键步骤: 1. 初始化种群:随机生成一组解,每组解代表一个旅行路径,即一个城市的顺序。 2. 适应度函数:定义一个适应度函数来评估每个解的质量,通常使用路径总距离作为适应度指标。 3. 选择操作:通过轮盘赌选择法或锦标赛选择法等策略,依据
BP Algorithm Improvement and Implementation in MATLAB
本论文针对BP算法,即当前前馈神经网络训练中应用最多的算法进行改进,并在MATLAB中实现。
Algorithm K Parameter in MATLAB Development
在本节中,我们将讨论k的表示和应用。k是一个重要的参数,它在许多算法中起着关键作用。通过正确设置k,可以显著提升模型的性能和准确性。
Dijkstra Algorithm for Shortest Path in MATLAB
使用Dijkstra算法,寻求由起始点s到其他各点的最短路径树及其最短距离。