SVM回归
当前话题为您枚举了最新的 SVM回归。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
MATLABML手写SVM与回归算法代码合集
手写的SVM 算法代码,配套的是MATLAB环境,写得挺清晰的,不是那种一看就绕晕的复杂实现,逻辑还比较好跟。最适合用来练基本功,尤其是刚学完斯坦福那门机器学习课程的同学,拿来练手正合适。
代码不只是讲 SVM,还有不少线性回归的实现,比如逻辑回归、梯度下降、正态方程,甚至还有一点点数据可视化的部分。像plotData.m、computeCost.m这些文件就能直接跑通,响应也快,适合一边调一边理解。
我还挺喜欢里头那几个案例。比如有个是预测申人是否被录取,用的是两门考试成绩去做分类;另一个是线性回归预测小吃摊的利润,场景设定蛮生活化,容易代入。
建议你运行前先看看每个.m文件的注释,逻辑还算
Matlab
0
2025-06-17
上证开盘指数预测:SVM神经网络回归分析代码
资源内容:利用支持向量机(SVM)神经网络模型,对上证指数开盘进行回归预测分析的代码实现。
代码功能:- 数据预处理- SVM模型构建与训练- 预测结果评估- 可视化呈现
适用对象:对量化金融、机器学习感兴趣的研究者和开发者。
数据挖掘
18
2024-05-25
14.上证开盘指数预测SVM与神经网络的回归分析
探讨了使用SVM和神经网络进行上证开盘指数预测的方法与应用。随着技术的进步,这些方法在金融分析中显示出了良好的预测性能和应用前景。
Matlab
7
2024-08-22
SVM与神经网络在信息粒化时序回归预测中的应用
在当今计算机科学领域,机器学习技术已经成为数据分析和预测的核心。支持向量机(SVM)和神经网络作为两种重要模型,广泛应用于时序数据的预测。探讨了它们在信息粒化时序回归预测中的理论基础和应用。SVM通过核函数处理非线性关系,优化决策边界;神经网络特别是循环神经网络(RNN)和长短时记忆网络(LSTM),通过时间依赖性捕获数据特征。信息粒化技术将复杂数据转化为更易处理的粒度级别,有效提升模型解释性和预测精度。MATLAB提供了强大的支持,包括SVM回归训练和神经网络模型构建,为优化时序数据预测提供了实用解决方案。
算法与数据结构
10
2024-07-28
Vsvm2.0发布多目标回归与参数优化的SVM算法库
Vsvm2.0是一款SVM算法库,引入了最佳参数优化算法,适用于Windows系统。它是2006年发布的Winsvm1.0的升级版本,增加了GA搜索优化参数和在0~1和1~1001范围内的'C'参数优化,同时增强了回归的多目标预测能力。其特点包括简洁实用的可视化界面,超高速的计算速度和高精度的效率,支持多线程计算,无需安装即可直接使用。功能上,它支持广度优先搜索SVM参数、GA搜索SVM参数、基于特征选择的顺序最小算法,能够导出Excel格式的标准化数据,并可打包为DLL,在不同平台上使用。
数据挖掘
20
2024-10-20
14.MATLAB神经网络43个案例分析初始SVM分类与回归.zip改写
MATLAB是一款功能强大的数学计算软件,广泛应用于数值分析、矩阵运算、信号处理和图像处理等领域。在机器学习和模式识别中,MATLAB具有重要作用,提供了神经网络工具箱和支持向量机(SVM)工具箱等丰富的工具。本资料通过具体案例详细介绍在MATLAB环境中如何应用SVM进行分类和回归任务。支持向量机是一种监督学习模型,通过找到最优超平面来实现不同类别样本的有效分离。在MATLAB中,使用神经网络工具箱进行SVM操作的基本步骤包括数据准备、模型创建、训练、预测、性能评估和参数调整等。案例中展示了如何处理数据、构建模型、训练和评估SVM模型,适合初学者学习和实践。
数据挖掘
13
2024-07-26
SVM分类算法
支持向量机的结构风险最小化原则,线性不可分问题拿手,适合搞分类任务的你。SVM 不靠经验拍脑袋,而是用数理逻辑来下判断,泛化能力也比较强。配上源代码、教程、仿真演示,学习起来事半功倍,推荐你看看。
数据挖掘
0
2025-06-22
线性回归
使用Python实现最小二乘法进行线性回归。
算法与数据结构
21
2024-04-30
SVM 多领域应用
SVM 在文本分类、图像分类、生物数据挖掘、手写识别等领域广泛应用。
SVM 潜力巨大,可成功应用于更多未知领域。
数据挖掘
16
2024-04-30
回归分析
一元和二元回归模型
线性回归模型建立、参数估计、显著性检验
参数置信区间
函数值点估计与置信区间
Y值点预测与预测区间
可化为一元线性回归模型的例子
统计分析
23
2024-05-01