J48分类器
当前话题为您枚举了最新的 J48分类器。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Weka数据挖掘:交叉验证与J48分类器性能评估
Weka批量处理模式下使用交叉验证评估J48分类器性能
在Weka的数据挖掘流程中,批量处理模式为用户提供了高效的数据分析途径。以下介绍如何利用Weka的批量处理模式,结合交叉验证方法评估J48分类器的性能。
数据准备:
使用 ArffLoader 加载ARFF格式的数据集。
模型构建:
选择 J48 分类器作为模型。
评估方法:
采用 CrossValidationFoldMaker 将数据集划分为训练集和测试集,进行交叉验证。
使用 ClassAssigner 指定类别属性。
性能评估:
使用 ClassifierPerformanceEvaluator 对J48分类器的性
数据挖掘
12
2024-06-30
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
优化决策边界的二类分类器开发MATLAB应用
判别函数是模式识别中用于分隔不同类别的重要统计技术之一。这种方法基于已知类别的均值和协方差,适用于参数方法。在此情境下,选择了两个不同的类别,以获取它们之间最优决策边界。这些类别包括双变量和单变量情形。这种分类器被称为二类分类器。分类器的简化形式涵盖三种情况:情况1:特征向量在统计上是独立的,协方差矩阵为对角矩阵,样本分布于球形簇中。情况2:特征向量在统计上相关,但两个类别的协方差矩阵相同,样本分布于相等大小的唇形簇中。情况3:最优决策边界为二次形式。若要使用此GUI,请先解压文件夹,并将MATLAB的当前目录设置为该文件夹。然后,在MATLAB命令行中输入判别式,并按ENTER以打开GUI。
Matlab
11
2024-09-28
MATLAB代码分享线性分类器、贝叶斯分类器和动态聚类优化
宝贝,含泪分享,上述代码主要包括了线性分类器设计,贝叶斯分类器设计,动态聚类。还有最优化的代码,包括拟牛顿法,共轭梯度法,黄金分割等等, share with you!
Matlab
15
2024-08-03
Python构建音乐分类器
Python构建音乐分类器
利用Python强大的机器学习库,我们可以构建精准的音乐分类器。通过提取音频特征,并使用机器学习算法进行训练,可以实现对不同音乐类型进行自动分类。
步骤:
音频特征提取: 使用librosa等库提取音频特征,例如MFCCs、节奏、音色等。
数据集准备: 收集不同类型的音乐样本,并将其标注为相应的类别。
模型选择: 选择合适的机器学习模型,例如支持向量机、决策树或神经网络。
模型训练: 使用准备好的数据集训练选择的机器学习模型。
分类器评估: 使用测试集评估分类器的性能,例如准确率、召回率等指标。
应用场景:
音乐推荐系统
音乐信息检索
音乐版权识别
Hadoop
15
2024-05-12
LIBSVM SVM分类器工具
开源社区的老牌利器 libsvm,训练分类器的好帮手。它用起来还蛮方便的,支持多种语言,像是 Python、Java、MATLAB 都能无缝集成,调试也省心。你只要准备好训练数据,就能快速上手跑出结果。
libsvm 的命令行工具挺简洁的,参数设置也比较清晰,比如要做标准的二分类,只用几行命令就能搞定。它还自带了交叉验证功能,测试效果不用再自己写一堆额外代码,省了不少事。
如果你对性能比较讲究,可以看看优化 SVM 参数那篇文章,讲得还挺细,像gamma、C这些参数怎么调,影响还真挺大的。
训练数据太大?不想浪费资源?那你会用得上特征约简的技巧。把没用的信息过滤掉再丢进 libsvm,训练效率
Informix
0
2025-06-13
Matlab实现贝叶斯分类器
这是用Matlab实现的贝叶斯分类器代码。欢迎下载。
Matlab
12
2024-08-28
MATLAB 决策树分类器
本示例代码展示了如何使用 MATLAB 决策树算法对特定疾病进行诊断,提供可下载的代码供参考。
算法与数据结构
15
2024-05-13
OpenCV 必备 Haar Cascades 分类器
OpenCV 提供了丰富的 Haar Cascades 分类器,涵盖人脸、眼睛、鼻子等物体识别。
算法与数据结构
16
2024-05-25
jBNC Java贝叶斯分类器工具
Java 的贝叶斯网络分类器工具包,叫jBNC,挺适合搞机器学习实验或者数据挖掘训练的朋友用。功能不复杂,但实用。你要是做文本分类、图像识别之类的任务,它能帮你把数据训得挺不错,响应也快,代码也不臃肿。
jBNC用 Java 写的,逻辑比较清晰,适合二次开发。你直接拿来跑个Naive Bayes或Tree Augmented Naive Bayes实验都没问题。训练、测试、调用都封装好了,不折腾。
以前我拿它做过一份医疗数据的分类实验,还不错,调参也简单。想扩展功能?你可以加你自己的评分函数或结构学习策略,接口挺友好。
要是你还在找贝叶斯算法资料,可以看看这几篇文章,蛮有的:
学习贝叶斯
数据挖掘
0
2025-06-17