粒子发现
当前话题为您枚举了最新的 粒子发现。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
MATLAB实验室粒子发现项目的登录代码下载
ParticleDiscoveryLab提供基于MATLAB的项目,用于下载登录代码。该实验室的目标是通过使用CMSOpenData提供的数据资源,为本科中级实验室练习提供补充。学生和教师可以使用MATLAB和Python解决方案进行学习,无需ROOT或开放数据虚拟机。实验涵盖从未知粒子X的初始状态到其2μs衰变的重构,并包括使用直方图计算其质量,学习拟合技术及背景贡献的消除。通过数据分析和不确定性传播概念,学生可确定其发现的粒子特性(质量和宽度),并与已知特性进行对比。DoubleMuParked数据集提供了基于Web的事件交互式研究工具,以便学生在笔记本电脑上进行快速操作。
Matlab
15
2024-09-27
发现数据团队文件解析
RFP提案:FindData项目名称链接到RFP:RFP类别devtools-libraries提案人:finddataio您是否同意在MIT和APACHE2许可下开放您代表该RFP和双重许可所做的所有工作的源代码?是项目简介概述互联网和区块链每天都会生成大量数据,包括由应用程序,行为和机器生成的数据。通过数据的管理和分析,我们可以发现数据中包含的巨大价值,并了解和洞察事物的内在本质。大数据已经成为人类了解世界的一种手段,数据正在不断改变人们的生活方式,经济规则,商业模式,甚至推动着整个社会和经济的创新与变革。基于全球区块链节点网络资源,创建了一个高度可配置但易于操作的数据采集机器人和数据资产
数据挖掘
14
2024-07-16
数据探索与发现.rar
数据探索--基础与技术.pdf金融软件开发必备指南压缩版.pdf中国银行业务全面指南.pdf
Oracle
11
2024-08-21
粒子群特性
粒子群是一种群体智能优化算法。其特性包括:-群体性:粒子群由多个粒子组成,每个粒子代表一个潜在的解。-最优解记忆:每个粒子都会记录自己的历史最优解,并通过信息共享在群体中传播。-全局最优解搜索:粒子群通过更新粒子的速度和位置,不断接近群体中目前已知的全局最优解。-随机性:粒子群算法中引入随机性,以避免陷入局部最优解。-可扩展性:粒子群算法易于扩展到高维复杂问题。
算法与数据结构
16
2024-05-13
果粉社区 - 发现优质 iOS 应用
果粉社区 funso.com,以苹果 APP 应用为核心,利用社会化关系、机器学习和数据挖掘技术,为用户提供个性化应用推荐,帮助用户轻松找到心仪应用。我们提供最新最全的限时优惠 iOS 应用信息,数据均来源于果粉社区 funso.com。
数据挖掘
13
2024-05-27
CPM算法重叠社区发现方法
CPM 算法(Clique Percolation Method,团渗透方法)是一个蛮实用的网络社区发现算法,适用于社交网络和其他复杂网络的。这个算法的地方在于它能发现重叠社区,也就是同一个节点可以属于多个社区,这在真实世界的网络中常见。CPM 算法通过团(完全子图)来识别网络中的社区结构,如果两个团有 k-1 个节点相连,就可以认为这两个团是渗透的,进而形成一个社区。由于算法不需要事先定义社区结构,它灵活,可以自动发现网络的社区结构。适用场景广泛,比如社交网络、生物网络、合作网络等。用它来复杂网络,能你深入理解群体之间的相互关系,值得试试!
数据挖掘
0
2025-06-24
粒子滤波MATLAB实现
利用MATLAB,可以通过一系列步骤实现粒子滤波算法:
初始化: 生成一组随机样本(粒子),并为其分配权重。
预测: 根据系统模型,预测每个粒子的状态。
更新: 根据观测数据,更新每个粒子的权重。
重采样: 根据粒子权重,重新采样粒子,以消除权重低的粒子。
状态估计: 根据重采样后的粒子,估计系统的状态。
MATLAB提供了丰富的函数库,方便实现粒子滤波算法,例如:* randn 函数可以生成随机样本。* mvnrnd 函数可以生成多元正态分布的随机样本。* resample 函数可以根据权重进行重采样。
Matlab
20
2024-05-19
社团发现代码Matlab微小障碍物发现新框架的官方实现,ICRA
社团发现代码Matlab微小障碍物发现冯雪创作的官方Matlab实现,ICRA 2019介绍该存储库包含微小障碍物发现新框架的官方Matlab实现。这篇论文已被IEEE机器人与自动化国际会议(ICRA) 2019接受。Python/ROS的官方实现即将推出。注:此版本在原作的基础上略有改进,训练代码略有改动,ROC性能有所提升。为了提高效率,基本边缘检测算法使用结构化边缘检测[1]。系统中的模块在很大程度上得到了加速,尽管仍有很大的改进空间。在实例级评估中,IoU被定义为预测提议和真实边界框之间的交集,可以在./evaluation/Func_evaluation_DR.m找到引文。如果你觉得
Matlab
11
2024-08-27
粒子滤波技术概述
粒子滤波是一种广泛应用于机器人、计算机视觉及信号处理等领域的状态估计算法。它利用随机样本(粒子)来近似表示状态变量的概率分布,适用于处理复杂的非线性问题。粒子滤波的计算复杂度较高,但能够有效地处理实时数据流。介绍了粒子滤波的基本原理及其在不同领域的应用,同时讨论了其相关的计算方法和工具。
算法与数据结构
8
2024-10-10
数据世界的宝藏:探索与发现
深入浅出地阐述数据挖掘的核心概念,并结合实际案例讲解数据挖掘的常用技术,帮助读者掌握从海量数据中提取有价值信息的方法和工具。
数据挖掘
13
2024-05-23