数据湖构建
当前话题为您枚举了最新的数据湖构建。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
深入解析Hudi:构建高效数据湖的关键
Hudi:赋能数据湖的利器
Hudi (Hadoop Upserts Deletes and Incrementals) 为构建高效可靠的数据湖提供了强大的支持。它能够管理大型数据集,并确保数据的一致性和完整性。
核心特性:
Upserts: Hudi 支持高效的更新和插入操作,确保数据始终保持最新状态。
Deletes: 可以精确删除数据,满足合规性和数据清理的需求。
Incrementals: 支持增量数据处理,仅处理自上次操作以来发生变化的数据,显著提升数据处理效率。
数据版本控制: 提供数据版本管理功能,允许用户回溯到历史版本的数据。
多种存储格式: 支持多种数据存储格式,如Pa
Hadoop
18
2024-04-30
基于Flink、Iceberg和对象存储的数据湖构建方案
阿里分享了一种利用 Flink、Iceberg 和对象存储构建数据湖的方案。
Flink 作为高吞吐、低延迟的流式处理框架,负责实时数据的摄取和处理。Iceberg 则作为数据湖的表格式引擎,提供 ACID 事务、高效的查询和数据演进能力。对象存储作为底层存储,提供高可扩展性和低成本的优势。
这种方案结合了三者的优势,可以高效地构建和管理数据湖,满足不同场景的数据分析需求。
flink
14
2024-05-12
利用Flink和Iceberg构建企业级实时数据湖
利用Flink和Iceberg技术,可以构建一个高效的企业级实时数据湖。这种架构不仅能够处理大规模数据流,还能确保数据的实时性和准确性。Flink提供了强大的流处理能力,而Iceberg则提供了可靠的数据湖管理和查询功能,使得企业能够更有效地管理和分析数据。
数据挖掘
13
2024-07-16
数据数据湖湖商商务务智能智能应用应用分析
数据湖在商务智能里,可真是个效率神器。它能存结构化、非结构化甚至半结构化的数据,像是你日常用的客户资料、社交评论、还有外部 API 抓来的数据,全都能往里丢。最妙的是,不用非得提前设定格式,想咋存咋存,灵活性真高。
德勤的做法就挺值得参考,他们搞了一个云服务能力框架,啥都有:云迁移、ERP、CRM……还有云平台设计和业务咨询服务。你要是正考虑搞大数据架构,完全可以借鉴他们的全链路思路,效率提升还挺的。
数据湖的技术架构也不复杂。数据从各种渠道来,像用Sqoop抽结构化数据、MapReduce批、PIG做数据清洗,扔到HDFS里。要查数据?用HCatalog。要跑?上PIG和Hive就行,响应也
算法与数据结构
0
2025-06-15
使用Spark处理Hudi数据湖
在Apache Hudi数据湖中使用Spark进行数据摄取、处理和查询。
spark
14
2024-04-30
Kylo 数据湖管理平台调研总结
特性:- 数据获取、准备和发现- 元数据管理、数据治理- 高级安全特性
定位:企业级数据湖管理平台基于 Spark 和 NiFi 的开源框架
Hadoop
11
2024-05-23
基于Flink+Hudi构建企业万亿级云上实时数据湖视频教程(2021新课)
本课程帮助学员掌握在云环境中搭建和管理大规模数据湖系统的技能。通过学习,学员将深入了解大数据生态系统中的关键组件,如Flink、Spark、Hadoop等,并能够应用这些技术处理实际业务场景中的数据需求。课程涵盖Flink的API编写、窗口设置、状态管理,确保数据的准确性和一致性。Hudi作为数据湖存储层,支持实时查询和更新,学员将学习如何使用Hudi维护数据一致性,提升查询性能。课程还包括Spark在批处理和交互式查询中的应用,以及与Flink协同工作,实现混合处理模式。此外,学员将了解数据湖的分层架构、数据生命周期管理、数据安全和隐私保护,以及在AWS、Azure上的部署方法。
flink
18
2024-07-12
Iceberg Flink Runtime 1.16.1 1.3.1数据湖支持
数据湖的实现有时候看起来有点复杂,但如果你用上iceberg-flink-runtime-1.16-1.3.1.jar,事情就变得简单多了。它为Flink了对Iceberg数据湖的支持,优化了数据和存储。你可以轻松实现高效的数据入湖,不需要太多配置。嘿,如果你还没试过,真得试试哦!对于需要实时大数据的场景,这个工具挺实用的。并且,你也能方便地结合一些其他工具来搭建自己的数据湖环境,像是Apache Flink的最新版本和Iceberg的整合。操作也简单,兼容性和扩展性都还不错。,如果你在搞大数据,是实时流,这个包绝对能帮你省不少事!
flink
0
2025-06-11
Flink在数据湖场景下的应用
Flink 在数据湖里的应用,真的挺香的。批流一体的特性让你在实时数据流和历史批数据时都能游刃有余。你想做实时推荐、风险控制还是 ETL 清洗,Flink都能稳稳搞定,响应也快,吞吐量也高,用着比较省心。
数据湖架构里,Flink 基本可以打通从采集到的全链路。比如你拿 Kafka 来采实时流,用 Flink,再写进 HBase 或 Hive,整个链条清晰又高效。是在做实时或报表这类场景时,Flink 的低延迟真的挺能打。
Flink 的 API设计也人性化,DataStream API、Table API这些都能根据你业务的复杂程度自由选择。语言支持也比较全,Java、Scala、Pytho
flink
0
2025-06-13
数据湖与数据管理:单平台方案的优势
数据湖与数据管理:单平台方案的优势
数据仓库和数据湖,不再是二选一的难题。
算法与数据结构
18
2024-05-12