模糊集样本
当前话题为您枚举了最新的 模糊集样本。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
模糊集合理论:大数据认知的新视角
李德毅院士从模糊集合、模糊逻辑、模糊规则、模糊推理、模糊控制、模糊信息处理以及模糊问题求解等多个维度,探讨了模糊集合理论在大数据认知中的应用。
经典论文:Zadeh L A. Fuzzy sets [J]. Information and Control, 1965,(8):338-353
算法与数据结构
16
2024-05-24
车险保单样本数据集
包含地区、车型、车主星座、赔款、保费等字段的车险历史保单数据,用于建模算法示例。
数据挖掘
14
2024-05-14
美国工程院院士-大数据与模糊集合李德毅院士与先锋同行
在大数据认知与模糊集合研究领域中,有几位杰出的科学家做出了开创性的贡献。首先,美国工程院院士Lotfi Zadeh(1921年2月生),是模糊集合理论的创始人。其次,波兰科学院院士Zdzislaw Pawlak(1926年11月10日 - 2006年4月7日),则提出了粗糙集理论,进一步推动了不确定性研究的进展。此外,美国南加州大学教授Jerry M. Mendel(1938年5月生),专注于二型模糊集合的研究,为模糊逻辑在大数据分析中的应用开辟了新的方向。这些科学家为模糊逻辑、粗糙集等技术奠定了基础,使大数据认知技术在复杂数据处理中取得了重大突破。
算法与数据结构
15
2024-10-25
Matlab开发基于紧致模糊模型的粗糙集与细糙集
Matlab开发:基于紧致模糊模型的粗糙集与细糙集,创建一种无需转换输入变量的易解释模型。
Matlab
10
2024-07-22
数据探索分析样本数据集的质量与特征
根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?有没有出现从未设想过的数据状态?其中有没有什么明显的规律和趋势?各因素之间有什么样的关联性?通过检验数据集的数据质量、绘制图表、计算某些特征量等手段,对样本数据集的结构和规律进行分析的过程就是数据探索。数据探索有助于选择合适的数据预处理和建模方法,甚至可以完成一些通常由数据挖掘解决的问题。本章从数据质量分析和数据特征分析两个角度对数据进行探索。
算法与数据结构
7
2024-11-04
方差定义(样本)
方差S²(样本)的定义为:
算法与数据结构
13
2024-04-30
样本代码介绍
SurveyData.csv 中含有有关华盛顿特区国家广场的纪念碑和博物馆的独特数据,而 Bingaman_Example_Code.Rmd 则演示了如何使用这些数据进行统计分析。
统计分析
23
2024-05-13
气体检测仪异常数据集超过200个样本
在信息技术领域,数据集是研究、开发和训练算法的关键资源,特别是在数据分析、机器学习和人工智能领域。\"气体检测仪异常数据集200+\"专门收集了超过200个气体检测仪在异常条件下的样本数据,帮助研究人员和工程师深入理解设备的行为模式,从而改善气体检测系统的性能和可靠性。气体检测仪通常用于监测环境中的有毒、有害或易燃气体浓度,如一氧化碳、硫化氢和甲烷,以确保工业安全和环境保护。
算法与数据结构
11
2024-08-21
基于matlab的模糊控制程序集优化
这个资源提供了关于模糊控制程序及其在matlab中的模拟仿真的理论和应用。对于从事这一领域的人员来说,这些内容具有很好的参考价值。
Matlab
8
2024-08-09
基于模糊等价类的频繁项集精简表示方法研究
频繁项集挖掘是数据挖掘的重要应用,但庞大的频繁项集数量限制了其实际应用。为减少频繁项集数量,使其更易于应用,提出一种基于格结构的频繁项集精简模型,并证明该方法产生的支持度误差范围。在此基础上,提出模糊等价类精简表示算法FEC。实验结果表明,该方法在显著减少频繁项集数量的同时,能有效控制支持度误差,与Index-Meta算法相比,产生的支持度误差更小。因此,基于模糊等价类的频繁项集精简表示模型及FEC算法具有较高应用价值。
数据挖掘
20
2024-05-12