全卷积网络
当前话题为您枚举了最新的 全卷积网络。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
keras卷积神经网络参数计算
利用keras框架,了解卷积神经网络原理,并掌握每一层训练参数的计算方法。
算法与数据结构
16
2024-04-30
卷积神经网络论文详解资料
卷积神经网络的论文解读 PPT,讲得还挺清楚的。直接从“卷积是啥”聊起,对初学者挺友好。重点是 2014 年那篇用 CNN 做句子分类的经典论文,讲了它的创新点和模型结构。对搞 NLP 或者深度学习入门的你来说,这种资源蛮实用的,尤其是讲清楚了怎么从想法到模型落地。哦对了,还有一些相关的扩展阅读,图像分类、Keras 参数计算、甚至 FPGA 上的实现都有,顺手一看提升效率。
算法与数据结构
0
2025-06-22
简化的双层卷积神经网络代码示例
这是一个简化版本的双层卷积神经网络代码示例,展示了深度学习中的基础技术应用。
数据挖掘
11
2024-09-16
使用Matlab编写的卷积神经网络程序及其解析
这是一个使用Matlab编写的卷积神经网络程序,并附带详细解析。
Matlab
7
2024-07-28
基于卷积神经网络的图像分类算法综述
生成5个随机数排列的列向量,一般用这种格式poissrnd(2,5) 生成5行5列的随机数矩阵poissrnd(2,[5,4]) 生成一个5行4列的随机数矩阵。这里介绍了如何通过逆CDF函数法生成服从特定分布的随机数,以柯西分布为例。
Matlab
17
2024-07-30
使用多列卷积神经网络进行人群计数
MindSpark Hackathon 2018利用MCNN在ShanghaiTech数据集上进行人群计数。这是CVPR 2016论文“通过多列卷积神经网络进行单图像人群计数”的非正式实施。预测工作正在进行中,同时进行热图生成。安装Tensorflow、Keras和OpenCV,并克隆此存储库以使用预训练模型。您可以从以下位置下载ShanghaiTech数据集:投寄箱://www.dropbox.com/s/fipgjqxl7uj8hd5/ShanghaiTech.zip dl
Matlab
8
2024-08-01
Matlab代码墙纸分类的卷积神经网络应用
项目3说明:截止日期为3月2日,您将使用Matlab内置的CNN训练功能,对17,000张256x256灰度墙纸图像进行分类。学习如何扩充数据、构建CNN并进行训练。数据集存放在“数据/墙纸/ <火车,测试> //”文件夹中,分为训练和测试图像两部分。第一步是培训和测试CNN,入门代码提供了卷积神经网络示例。
Matlab
13
2024-08-27
基于简单卷积神经网络的模式识别精度评估
本代码使用MATLAB实现了一个简单的卷积神经网络(CNN)模型,并对其在模式识别任务上的精度进行了评估。
代码结构:
数据加载与预处理
CNN模型构建
模型训练
精度评估指标计算 (例如: 准确率、精确率、召回率等)
结果可视化 (例如: 混淆矩阵、ROC曲线等)
使用方法:
将代码文件下载至本地MATLAB工作路径。
修改代码中数据加载路径及相关参数。
运行代码。
注意:
代码需要安装MATLAB深度学习工具箱。
可以根据实际需求修改网络结构和参数。
Matlab
16
2024-06-01
Matlab深度学习测试卷积神经网络代码实现
在深度学习导论课上,使用Matlab实现了卷积神经网络的代码,最终完成了手写数字识别作业。
Matlab
13
2024-08-12
多模态学习图像识别与卷积神经网络解析
多模态学习的图像识别知识点,讲得还挺全面,适合刚入门或想系统复习下的同学看看。内容覆盖了从特征提取到模型评估,讲人话,没有太多晦涩术语。尤其是卷积神经网络那块,说得比较透,配合文末的资源一起看,理解起来更快。
算法与数据结构
0
2025-06-11