实时统计

当前话题为您枚举了最新的 实时统计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于Storm的实时舆情统计计算服务
Java实现的舆情实时统计计算服务项目,随着技术的进步,Storm框架的持续更新使得其在数据分析和API接口服务方面发挥重要作用。项目结构包括storm-parent、storm-dao、storm-redis、storm-analysis、storm-web和storm-core,利用MySQL存储爬虫数据,Redis进行数据去重。该服务基于分布式流式计算技术,为用户提供高效的数据分析和实时统计功能。
Kafka用户日志实时统计编码实践
Kafka 的用户日志实时上报方案,讲真,蛮实用的。你要是平时跟日志、数据打交道多,那这个资源绝对值得一看。用Log4j配合 Kafka Appender,日志就能直接打到Kafka Topic里,响应也快,配置也不复杂。再加上Kafka Streams,一边收日志一边算统计,活跃用户数、热门操作都能搞得清清楚楚,适合做实时仪表盘或者用户行为。
Kafka用户日志上报实时统计应用概述
要说大数据日志收集,Kafka简直是必不可少的工具了。这份《05、Kafka 用户日志上报实时统计之应用概述》其实就是围绕如何利用Apache Kafka进行实时日志统计的实战分享。说白了,它教你怎么用 Kafka 在生产环境中搞定用户日志的实时和。 Kafka 本身作为一个分布式流平台,优势就在于大流量、实时数据的能力,适合日志类的数据流。你可以把你的日志数据通过生产者 API 投递到 Kafka 主题上,之后通过 Flink、Spark Streaming 这类工具去实时、统计这些数据,效果蛮好的。 有个小技巧,如果你有多个消费者,Kafka 支持消费者群组模型,这样不仅提高效率,还能保证
Kafka用户日志实时统计分析与设计
Kafka 的用户日志实时统计设计,算是数据流里的“老司机教程”了。整套方案从日志采集、Kafka 集群配置到实时计算和展示,讲得清楚透彻。用的技术也挺主流:Kafka、Fluentd、Spark Streaming、Flink、Grafana这些都有涉及,拿来即用不费劲。 用户日志的流程讲得比较细,从API直传到 Logstash 采集都提到了,挺贴合实际。Kafka 集群怎么配置、分区怎么选、怎么做副本容错也都有例子,省了不少踩坑时间。 实时计算部分说得还蛮实在的,Kafka Streams跟Spark Streaming各自适合什么场景,写得清清楚楚。要做窗口计算、状态管理这类复杂逻辑,
Spark2.x企业级大数据项目实战实时统计、离线分析与实时ETL全解析
本课程源于实际生产项目,所有代码在现网大数据集群上稳定运行,拒绝使用演示数据。课程详细覆盖了离线分析和实时分析的大多数应用场景,通过三个真实生产案例,深入探讨如何优雅地整合Hadoop、Spark、HBase、Kafka、Redis、MySQL等关键大数据技术,并实际应用于项目中。
Impala实时查询教程
Impala 的查询速度是真挺快的,适合你那种要对超大表做实时的场景。你可以直接跑 SQL 语句,语法也比较友好,基本上 MySQL 那套你拿来就能用。而且它跟 Hive 是可以互通的,元数据共享,数据不重跑,效率直接拉满。 Impala 的交互式查询挺适合报表系统、实时看板之类的场景。你有个需求,比如用户点击报表要马上看到统计数据,用 Impala 准没错。SELECT COUNT(*) FROM logs WHERE event='click',几亿行数据,几秒内就能出结果,体验贼丝滑。 和 Spark 的配合也蛮不错。你可以用 Spark 离线数据,结构整理好之后交给 Impala 做实
CheaperClicker实时答题系统
CheaperClicker 是个适合团队项目的小型数据库系统,简洁、实用。它的设计理念类似于 Kahoot,你可以用它来创建数字教室测验系统,学生通过手机实时回答问题,答案会实时展示在主屏幕上。系统的架构也挺简单,利用数据库的SortedSet存储分数,使用哈希来保存答案。这个项目适合用来做一些快速的原型验证,适合想要快速搭建在线答题系统的开发者。 如果你正在为课堂答题系统寻找方案,可以参考它的架构,尤其是实时更新机制,真的蛮实用的。 注意,如果你的用户量比较大,需要考虑进一步优化数据库和事件的效率,避免响应速度变慢。
Impala实时查询引擎
Impala 的官方文档,内容挺全,讲得也比较细,适合你平时查资料或者搞性能调优时用。Impala 的实时查询能力还蛮厉害的,支持直接用标准 SQL查Hadoop里的数据,响应也快,查询写起来跟用普通数据库差不多,门槛挺低。Impala 的MPP 架构,查询的时候能并行,性能比老的MapReduce快不少,适合你需要快速出结果的时候,像做报表、搞数据就挺方便。和HDFS、HBase这些老朋友集成得也比较顺,支持的数据格式也多,像Parquet、Avro、ORC都能直接用,数据搬来搬去挺麻烦的,用 Impala 可以省不少事。嗯,查询的时候 Impala 还挺省事,数据基本都在内存里,低延迟,也
实时工坊资料
MATLAB 学习必备资料,欢迎查阅。
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤: 用户将Topology提交到Storm集群。 Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。 Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。 Worker进程负责执行具体的任务。