风资源分析
当前话题为您枚举了最新的 风资源分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
水陆临界地形下输电铁塔风状况的风场分析(1988年)
利用南京燕子矶及大厂区两个过江输电铁塔上的风速梯度观测数据,探讨了中性稳定条件下水陆临界地形对不同风向扇面的铁塔风场特征的影响。统计分析显示,在水平尺度2000米范围内,水陆临界地形对下风向铁塔风场特征的影响与铁塔距离水陆临界地形的水平距离之间存在一定的比例关系。根据所采集的资料和统计结果,这种比例约为1/10。
统计分析
15
2024-07-29
支付风控模型分析及其控制策略解析
知识图谱画像从群体和个体的统计角度评估事件风险,而图谱则更进一步,从关系角度评估风险。知识图谱是由Google提出并应用于搜索引擎,后在多个领域广泛应用。交易作为社会行为,通过关系分析,能更精确了解其中的风险。例如,如果A是高风险用户,并且经常与B有交易关系,那么B的风险等级也会相应提高。图谱是一种语义网络,基于图的数据结构,由点和边组成。点表示实体如人、公司、电话、商品、地址,边表示实体间关系。支付风控类似于建立画像,需要支持各种实体和它们之间的关系,如人、机构、地区、日期、电话、手机号、设备、商品等。图谱数据源类似于画像,也需要有效的互联网数据和专业数据库支持,以提高数据质量和关系计算性能
算法与数据结构
13
2024-08-08
金融大数据应用场景分析信贷风控案例
金融大数据的信贷风控案例,挺适合刚接触银行数据场景的前端同学看一看。银行里的风控,不再靠死板的历史数据了。现在更多是用大数据来整合像客户评价、行业动态、消费习惯这类新鲜数据,用起来更灵活,评估更靠谱。比如你要做个信贷评估系统界面,里面要展示企业的征信情况、经营状态,甚至社交关联。这时候你就得知道这些数据从哪儿来、怎么——这篇文章讲得还挺清楚的。文章里提到的内外部数据整合,用起来其实不复杂,就是你得拉一堆接口,把信息归类好。比如从人行征信系统拉信用记录,再结合一些第三方的经营数据,形成一个完整的风险评分。如果你对实时风控感兴趣,推荐你顺带看看这篇《基于流式大数据技术的金融业务风险实时监控》,讲得
spark
0
2025-06-14
DIgSILENT PowerFactory风储系统建模与蓄电池特性分析
风储系统的建模太抽象?DIgSILENT PowerFactory里的风电+储能联合方案还挺好上手的。文中一开场就讲了DFIG 双馈风电机组的控制逻辑,尤其是PI 控制器怎么根据风速变化调整参数,说得还挺细。再就聊到电池 SOC 管理,非线性充放电啥的都有,看一眼你就懂了电池什么时候该收手、什么时候能放电到底。
风速一突变系统怎么办?别慌,作者也考虑到了,直接上了功率分配算法和储能延迟响应机制,你会看到系统怎么稳住场面,不让电池过载。就像老司机给你复盘操作流程,配合图表挺直观的,连 SOC 曲线怎么看都有提醒。
对了,调参用的实际风速数据也提了,不是那种纸上谈兵的理想模型。搞风电或者做储能系统
PostgreSQL
0
2025-06-16
麦克风密度几何设计
基于麦克风密度的统计分析,优化阵列几何形状以提升沉浸式环境中语音信号波束形成性能。提出目标函数规则的优化算法,综合声源分布先验知识和声学场景概率描述,构建具有出色SNR性能的阵列。通过变异常规配置,克服常规阵列局限性,提供易于安装且具有良好SNR结果的阵列。
统计分析
19
2024-05-20
GFS.json风场数据
提供GFS模型的风场数据,用于气象分析和预测。
NoSQL
26
2024-05-13
情感分析资源下载
在技术领域,情感分析是一项重要的自然语言处理任务,涉及对文本情感倾向的判断,如积极、消极或中性。关注利用支持向量机(SVM)算法对微博评论进行情感分类,详细介绍了SVM及其在Python环境中的实现过程。SVM是监督学习模型,广泛用于分类和回归分析。在情感分析中,SVM通过最优超平面将不同情感类别的文本分隔,最大化样本间的间隔以实现最佳分类效果。其优势在于处理高维非线性问题,通过核函数映射转换数据至可线性分离形式。Python中,使用Scikit-learn库实现SVM,包括文本预处理(如去除停用词、标点、词干提取或词形还原)及数据转换(如TF-IDF或词袋模型)。分为训练集和测试集,训练SV
算法与数据结构
15
2024-07-22
时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
13
2024-09-28
情感分析词典资源汇总
情感项目的词典资源用过不少,这份整理真的挺全。常用的知网 HowNet、中文极性词表、PySentiment都有,甚至连微博情感标注、语音情感库也收录了。你要是做文本情感分类或者评论情绪识别,用它打底蛮稳的。
情感词典的种类覆盖挺广,从词语极性到语音特征,你可以按项目需求自由组合。比如想做短文本,中文负面词语就蛮实用的;要是搞社交平台内容,那个微博评论情感标注也别错过。
用PySentiment的好处是可以直接嵌到Python代码里跑模型,省不少时间。嗯,如果你还在做Spark流程,文档里那篇Spark 文本情感指南也比较清晰,挺适合大规模数据。
几个资源都是.zip格式的词典包,下载完解压就
数据挖掘
0
2025-06-16
机器学习在金融风控中的应用:实战案例与数据分析
金融风控是保障金融机构稳健运营的关键环节,而机器学习技术的应用为金融风控带来了新的突破。通过分析海量业务数据,机器学习模型可以识别潜在风险,提高风险预测的准确性和效率。
数据分析:洞察风险本质
在金融风控中,数据分析是构建有效模型的基础。通过对借贷用户、交易记录等数据的深度挖掘,我们可以洞察风险的本质,识别潜在的欺诈行为,并制定相应的风控策略。
模型构建:精准预测风险
利用机器学习算法,我们可以构建风险预测模型。例如,逻辑回归、决策树、支持向量机等模型可以根据用户特征预测借贷违约概率。深度学习模型则能够捕捉更复杂的特征关系,进一步提高预测精度。
实战案例:应用场景与效果
机器学习在金融风控领域
统计分析
23
2024-05-19