态势感知
当前话题为您枚举了最新的 态势感知。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
大数据与人工智能在信息安全态势感知中的应用
现代企业面临着严重的信息安全态势感知威胁。大数据和人工智能技术被用于信息安全态势感知系统的总体设计和应用,包括数据采集、预处理、检测、分析和处理技术,以提高企业安全威胁检测和处理能力。
算法与数据结构
12
2024-05-25
简单感知器Matlab中的基础感知器开发
这是教科书《神经网络与机器学习》中基础感知器的一个示例。
Matlab
12
2024-07-28
MATLAB中的单层感知器和多层感知器示例
MATLAB中的人工神经网络实例包括单层感知器,可用于线性可分问题,以及多层感知器,适用于复杂分类和系统识别,例如鸢尾花分类问题。
Matlab
13
2024-07-27
cscoder Matlab压缩感知仿真
压缩感知领域的老朋友OMP 算法,用 Matlab 来跑挺顺手的。cscoder这个资源就专注做了一件事:把 1-D 信号的压缩感知流程整明白,代码也写得清晰。用到的是正交匹配追踪法(OMP),一步步找稀疏解,把原始信号还原回来。别看是 Matlab 脚本,逻辑挺严谨,适合初学者理清整个信号恢复流程。
里面的CS_OMP.m文件,从信号生成、测量矩阵构造、到压缩观测、OMP 重建,全流程都有,而且关键步骤都有注释。像测量矩阵、稀疏向量这些概念,跑一遍代码就懂。你可以自己改参数,比如调稀疏度、压缩比,看看重建效果怎么变。
最棒的是,它挺适合用来做毕业设计 demo 的,逻辑完整、结果直观,还能加
Matlab
0
2025-06-17
压缩感知OMP框架MATLAB实现
压缩感知的 OMP 框架,沙威教授这套还挺有代表性的,适合你快速上手。用的是小波变换+OMP 重构算法的组合,整体逻辑清晰,matlab代码也不复杂,适合拿来直接跑一跑。代码里用的就是经典的Orthogonal Matching Pursuit,你可以理解为“从一堆特征里一步步选出最相关的”,挺像组装积木,每次搭一块,逐渐拼出原信号。跑一遍就能看到怎么从稀疏采样恢复完整信号,直观又有成就感。小波变换也别怕,简单说就是把信号拆分得更细,让原本复杂的东西看起来更规整,方便压缩和重构。像图像压缩、医学成像、无线通信这些场景都在用。如果你平时就用MATLAB,那这个框架简直不要太适配。跑个 OMP 仿
Matlab
0
2025-06-24
压缩感知技术Cosamp的应用
最新的压缩感知方法,如Cosamp,正在被广泛应用于信号和图像重建领域。
Matlab
13
2024-07-27
单层感知器神经网络MATLAB实现(含LDA/PCA/多层感知器)
单层感知器的 Matlab 实现,功能挺全,写得也蛮规整,适合刚上手机器学习的你拿来练手或者参考。项目里不只是感知器,还顺手带上了像Logistic 回归、LDA、PCA这些常见方法,配合 Matlab 的工具箱,调试体验还不错。
多维线性回归加上L2 正则化,过拟合那块挺有用。还有三次样条插值、留一法交叉验证这类细节也考虑到了,用来做模型评估还蛮方便的。嗯,都是些你在课程项目或论文实验里能用得上的家伙。
更实用的是,后面还搞了个多层感知器来做 USPS 手写数字分类,结合EM 算法和高斯混合模型做聚类,思路清晰,结构也合理。如果你在研究神经网络或数字识别,这部分值得重点看看。
顺手一提,k
Matlab
0
2025-07-01
借力数据感知优化智能服务
利用大数据能力,增强对公共服务需求的洞察和感知,将服务延伸至基层和个人,弥合城乡区域差距,满足多元化个性化需求,实现服务均等、高效、智能化。
Hadoop
17
2024-05-13
压缩感知利器:OMP算法源码解析
这份压缩感知OMP算法源码,简洁易懂,专为初学者打造,助你轻松理解算法精髓,快速上手实践。
Matlab
11
2024-05-28
matlab感知器算法资源下载
我找了很多在线资源,整理了一个文件夹,包含大量matlab代码,供大家学习参考。
Matlab
19
2024-07-27