指数序列

当前话题为您枚举了最新的 指数序列。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

指数平滑技术时间序列的应用
给定输入序列X(列向量),以FS赫兹采样,指数平滑器根据指定的时间常数TAU返回平滑的输出序列Y。如果X是矩阵,则对其列向量逐一进行处理并返回相应的平滑输出Y。如需进一步的MATLAB示例用法,请键入“help expsmooth”。
上证综合指数2013年5分钟级别时间序列数据
上证综指的 5 分钟级别数据,还挺有意思的,尤其适合搞量化或者模型预测的你。2013 年的完整数据,颗粒度细,适合用来训练机器学习模型,或者测试高频策略。细粒度的数据对建模挺友好,比如你想拿SVM、BP 神经网络或者深度学习跑个趋势预测,都比较合适。尤其像那种需要时间序列连续性的数据集,这份资源就挺顺手的。要是你对情绪感兴趣,也可以配合社交媒体数据做情绪波动 vs. 股价走势的对比,有朋友就用这份数据在情绪驱动策略上搞了个原型。用MATLAB或Python都行,配合 pandas 做数据清洗、重采样、画图都方便,响应也快。数据结构不复杂,字段清楚,用起来省事。想入门模型预测?你可以先看BP 神
Matlab开发 - 广义矩阵指数
Matlab开发 - 广义矩阵指数。使用初始条件y(0)=单位矩阵i来解y(1),其中y'(t)=d(t)*y(t)。
MATLAB ExponentialSmoother指数平滑算法实现
指数平滑的 MATLAB 实现,用起来还挺顺手的。项目里主打文件是expsmooth.m,算法逻辑清晰,参数配置也比较灵活。想搞定时间序列的短期波动,这工具真挺合适。 简单指数平滑的方式,就是对最近的数据点多给点权重,远一点的少一点,适合没啥趋势的场景。要是数据有趋势变化,用Holt 线性趋势模型,还能顺带预测未来走势。季节性数据?那就用Holt-Winters,趋势、季节性一起搞定。 你传进去一组时间序列数据,再给个平滑因子、趋势因子,甚至季节因子,输出就是平滑后的数据或者预测值。代码结构不复杂,改参数、加功能都比较方便。打开expsmooth.m看下,快就能上手。 授权信息写在licens
修改序列
ALTER SEQUENCE 语句可修改序列的增量值、最大值、最小值、循环选项和缓存选项。如果序列达到 MAXVALUE 限制,修改序列继续使用。
数组运算(指数、对数、开方)- Matlab 基础
在 Matlab 中,exp、log 和 sqrt 函数分别用于对数组中的每个元素进行指数运算、对数运算和开方运算。
Matlab计算最大Lyapunov指数的程序
在Matlab中,计算系统的最大Lyapunov指数是评估混沌性质的重要方法。Lyapunov指数描述了系统中相近轨道随时间按指数方式分离或聚合的速率。使用Chen系统的Lyapunov指数谱函数,结合ode45函数解决微分方程组获取系统轨道信息,并使用Jacobi矩阵计算Lyapunov指数。调整参数a、b和c影响系统混沌性质,其中a范围为32到40。计算结果显示Lyapunov指数大于零即系统为混沌系统。该方法可预测系统长期行为。
谷歌序列到序列教程Matlab代码实现
Thang Luong、Eugene Brevdo和赵瑞编写的神经机器翻译(seq2seq)教程,这是谷歌项目的一个分支。本教程帮助使用稳定TensorFlow版本的研究者快速上手。它详细介绍了如何构建竞争力强的seq2seq模型,特别适用于神经机器翻译任务。教程提供了最新的解码器/注意包装器,结合了TensorFlow 1.2数据迭代器和专业的递归模型知识,为构建最佳NMT模型提供了实用的提示和技巧。完整的实验结果和预训练模型在公开可用的数据集上进行验证。
百度指数爬虫程序优化
通过输入百度指数网页的cookie序列和所需关键词,可以获取特定时间段内的搜索量数据。代码简洁易读,可根据用户需求进行定制。
MATLAB中计算Lyapunov指数的方法
MATLAB中计算Lyapunov指数的方法涉及自动控制理论和先进控制理论中系统稳定性的分析。