概率函数

当前话题为您枚举了最新的 概率函数。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

概率函数ANSYS Workbench工程实例详解
概率函数的应用说起来挺玄的,但配合 ANSYS Workbench 的工程实例,一下子就清楚多了。尤其是像 @pbn(p,n,x) 这种二项分布的累积分布函数,配上直观的建模过程,看完案例你就懂得差不多了。 LINGO 的金融函数部分也讲得比较细,像 @fpa 和 @fpl 这种净现值的计算方法,直接用例子带着你一步步套公式、跑代码,蛮适合刚接触建模的朋友。 举个例子,贷款 5 万块,年利率 5.31%,10 年还清,每年还多少?一句 50000 = x * @fpa(.0531,10) 就能搞定,答案是 6573.069 元,够清晰吧? 要说亮点,还是工程实践部分。概率函数结合 ANSYS
MATLAB工具箱非参数概率函数估计的归一化B样条实现
开发了MATLAB工具箱“bsspdfest”,使用归一化B样条实现非参数概率函数估计。该工具箱支持一维和多维数据的B样条系列,利用MATLAB数组的直接寻址和矢量化方法加速计算。支持计算所有维度数据的PDF、CDF和幸存者函数,以及一维数据的逆CDF和累积风险函数。还实现了网格插值,提供快速的近似评估。最新版本2.3.1版支持有界域数据的反射和所有维度数据的有界域。
Matlab中概率密度函数的应用
Matlab提供了多种有用的函数,其中包括处理概率密度函数的工具。这些函数能够帮助用户分析和处理各种概率分布,如正态分布、泊松分布等,为数据分析和模拟提供了重要支持。使用Matlab,研究人员和工程师可以快速准确地计算和可视化不同分布的概率密度函数。
Matlab实现-高斯正态分布概率密度函数
在Matlab中使用高斯正态分布概率密度函数可以方便地进行数据分析。高斯正态分布是一种常见的统计模型,广泛应用于自然科学和工程领域。
Matlab实现Nakagami分布的概率密度函数
Nakagami分布在通信系统中广泛应用。以下是一个Matlab代码示例,用于绘制Nakagami分布的概率密度函数,您可以根据需要调整参数。
多项式概率密度函数的MATLAB开发
这个MATLAB文件用于计算多项式概率密度函数的数值,其中参数N和P从输入的X中获取。需要注意的是,除非X是整数,否则密度函数的值为零。假设有一组随机变量{X1, X2, ..., Xk},每个变量取值范围在0到正整数之间。假设有k个非负数{p1, p2, ..., pk},它们的总和为1。对于每组k个非负整数{n1, ..., nk},其和为n,概率P( X1 = n1, X2 = n1, ..., Xk = nk ) = p1^n1 * p2^n2 * ... * pk^nk / (n1! * n2! * ... * nk!)。这样的变量集合{X1, ..., Xk}具有多项式联合分布,其
随机事件及其概率概率建模入门
概率论的入门资料太多,想系统梳理一遍其实不容易。《随机事件及其概率》这篇内容就挺靠谱,结构清晰,讲得通俗,适合打基础或者查漏补缺。从最基本的随机事件讲起,像抛硬币、掷骰子这种经典例子它都有。方式比较贴近实际,比如事件的并、交、补这些集合运算,用生活场景理解起来还挺顺。后面几节对概率的定义、条件概率和事件独立性讲得系统。是条件概率的部分,用公式 P(A|B) = P(AB)/P(B) 引出了乘法公式,逻辑挺顺的,推导过程清楚。讲到全概率公式和贝叶斯公式时,配了完整公式,还有点小例子,如果你之前总觉得这些公式有点抽象,这部分蛮值得看几遍的。我觉得比较实用的点是,它还贴了几个配套资源。像这个 Opt
MATLAB数据统计与分析中常见概率分布函数
Matlab工具箱为各种常见概率分布提供了多类函数:概率密度函数(PDF)、累积分布函数(CDF)、反函数(INV)、统计特征(STAT)、随机数生成(RND)。每种分布都可以通过相应的命令字符来调用这些函数,输入合适的自变量和参数即可。
使用Matlab计算积雪分布的beta分布概率密度函数
AMS_shape_orient_matlab存储库提供了用于计算积雪分布的Matlab代码,详细描述了在《大气科学》杂志文章中如何使用H函数分布来量化积雪形状和方向对降雪速度和自收集率的影响。
计算数据集经验概率密度函数估计的MATLAB开发
在过去几十年中,从统计过程中获得的一些经验数据的价值有所不同。现在需要估计这些数据的概率密度函数(PDF),这需要在对数刻度上等分这些值。这一过程简单而高效,适用于处理数百万个数据点。