视网膜图像

当前话题为您枚举了最新的 视网膜图像。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

视网膜波模拟代码
使用 MATLAB 模拟视网膜波扩散模型
新一代眼底图像视网膜血管分割算法
此脚本由Tyler L. Coye (2015)开发,所有权归天普大学医学博士生所有。自发布以来,已有超过6,000次下载。虽然时间有限,但大量使用此算法的研究论文证明了其在研究中的重要性。欢迎有兴趣的人士与作者共同进一步完善该算法。
视网膜厚度图和子域数量分析工具:retinaMaps
retinaMaps 算法使用分割数据描述视网膜色素上皮 (RPE) 和布鲁赫膜 (BM) 之间的空间。它提供 ETDRS 子域对应的面积和体积值。使用 retinaMaps 前,需要先执行 segPLEX(https://github.com/cnzakimuena/segPLEX)。处理后的文件夹(如 SamplePatient_01、SamplePatient_02 等)应包含一个“结果”子文件夹,将其放入“已处理”文件夹中,该文件夹应位于当前目录内。
基于CNN的糖尿病视网膜病变检测MATLAB开发的深度学习方法
在眼底图像分析中,深度神经网络(CNN)已被广泛用于糖尿病视网膜病变检测。将介绍如何利用深度学习技术和MATLAB实现自动化的糖尿病视网膜病变识别流程。请在有任何疑问时联系电子邮件:josemebin@gmail.com 或 电话:+91 9994444414。
【医疗技术】基于计算机视觉的视网膜血管检测及Matlab代码
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划以及无人机等多个领域的Matlab仿真应用,使得视网膜血管检测技术更加精准和高效。
青光眼与糖尿病性视网膜病变患者眼单色像差的统计分析
眼单色像差的统计挺适合搞图像或医疗成像方向的朋友看一眼。文章用数据讲得明明白白:青光眼和糖尿病视网膜病变患者的高阶像差比正常人高出不少,分别是 2.9 倍和 1.8 倍。也就是说,如果你在做眼科成像、尤其是自适应光学相关的开发,这些参数能帮你搞清楚设备应该达到什么级别。文里还提到要用高阶的泽尼克多项式来校正像差——嗯,不是那种二阶三阶小打小闹的,是高于 8 阶的那种,系统精度得上得去。还有一点比较实用的是:波前校正器的行程需求也给出来了——青光眼要超 39μm,糖网病变要超 14μm。搞硬件调参时你至少心里有个谱。自适应光学系统不只是用在望远镜里,在眼科图像里也一样吃香,只不过面对的是活体人眼
图像访问
ImageAccess.rar 文件包含与图像访问相关的资源和工具。
图像导入示例maplab的图像读取技巧
这篇文章展示了maplab如何有效地读取图片,是一个非常实用的示例。读者可以通过详细研究,深入理解该技术的应用。
图像修复简单图像修复GUI-Demo
如何修复自己的图像?将您的图像放在您的ImgFolder文件夹中,执行createImgMask.m以获取蒙版图像。只需运行简单的GUI。
使用Matlab进行图像处理将彩色图像转换为黑白图像
Matlab开发-将图像转换为黑白图像。利用无背景切片图像技术,实现彩色图像向黑白图像的转换。