稳健模型拟合

当前话题为您枚举了最新的 稳健模型拟合。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB代码优化高效成本共同模型拟合与稳健的几何分割
在处理受噪声和异常值干扰的数据点时,识别底层模型常导致复杂的多模型拟合问题。提出了一种基于稳健几何模型拟合的快速分割方法,通过将数据点的高阶亲和力投影到图形中,并使用谱聚类进行聚类。为了减少计算成本,引入了一种有效的采样策略,以获取全图的高精度近似。实验结果显示,这种方法在精确性和计算效率上都优于传统的多结构模型拟合技术。
模型过拟合和欠拟合
模型拟合情况分为两种: 过拟合:模型在训练集上的表现过于理想,泛化能力较差。 拟合不足:模型在训练集上表现不佳,无法捕捉数据的规律。 理想模型应同时具有较低的训练误差和泛化误差。
稳健估计度量
利用 MATLAB 实施测量程序,通过调整权重的大小实现稳健估计。
MATLAB绘图随机IF模型拟合代码演示
在MATLAB中使用拟合代码IF_toolbox,详细介绍了如何拟合具有峰值触发电流eta和移动阈值gamma的随机IF模型。文章揭示了三种皮质神经元类型的提取和分类过程,并比较了它们的不同适应机制。此外,作者Skander Mensi、Richard Naud等人在神经生理学杂志2011年的研究中使用了类似的方法,通过fit_IF()脚本演示了模型的实施过程。拟合过程验证该方法在参数估计上的性能。
数据拟合的模型、方法和理论梳理
讨论了数据拟合的基本原理,整理了多种相关拟合方法,从数学理论角度深入探讨
BP神经网络分类与拟合模型
非线性问题搞不定?那你得看看这个经典的BP 神经网络了。它就是那种虽然老,但还挺靠谱的模型,前馈结构加上反向传播算法,分类和拟合问题效果都还不错。结构上没啥花里胡哨的,输入层-隐藏层-输出层,中间那几层你可以根据任务随便堆叠几个。每个神经元接收上一层的输出,做个加权和,再激活一下——常见的ReLU、sigmoid都能用。它的核心其实就是反向传播算法。前面算一遍预测结果,后面再对照实际值把误差一层一层“倒着推”回去,调整每个连接的权重和偏置。虽然听起来有点麻烦,但用起来其实挺顺手的。举个例子,你要拿它做鸢尾花分类:4 个输入特征,输出 3 个种类,中间加个 10 个神经元的隐藏层。训练过程基本就
BRMaximin MATLAB函数实现认知层次模型与行为稳健策略
通过利用认知层次(CH)模型来描述有限理性对手的行为,确定具有不同形式不确定性的矩阵游戏的行为稳健解决方案。当不确定性集、概率分布或模糊性集可用时,对tau参数使用有限或基于区间的不确定性。 CogHierSol()函数输出给定博弈和tau值的CH模型解,CogHierExpM()函数提供M步思考者在一组tau值上的给定动作的预期值。 BRmaximin_XYZ函数为正常形式的游戏找到行为稳健的策略(BRS)。即BRmaximin_R1和BRmaximin_R2分别识别基于有限和区间的tau不确定性集合的BRS。BRmaximin_S1和BRmaximin_S2确定离散和beta概率分布的BR
最小二乘法Matlab模型拟合代码
最小二乘法的系统辨识代码,写得还蛮清爽的,用Matlab跑起来效率也不错。整个流程标准,从数据读取到模型拟合,基本一步到位,挺适合新手试水。 系统辨识用最小二乘的方式做,优势就在于简单直接,适合那种已知输入输出对、想快速搞个线性模型出来的场景。响应也快,代码也不啰嗦。 里面的结构其实不复杂,核心就在几行inv和矩阵乘法,懂点线性代数的你一看就明白。想深挖的,可以结合下SVM 仿真或者非线性最小二乘,配合用效果更好。 哦对了,多项式拟合那篇也不错,风格跟这套代码挺像的,可以顺手参考下。 如果你在搞OFDM、信道估计之类的通信类项目,也能套这套思路,相关的代码资源都整理得挺全的,别错过了。 建议你
非线性回归模型的拟合曲线Logistic曲线
非线性拟合的 Logistic 曲线,蛮适合拿来那种“S”型增长趋势的场景,像用户增长、药物反应这些都能用得上。用 MATLAB 来搞挺方便的,是配合fminspleas这种函数,拟合效果不错,收敛也快。 Logistic 模型本身就不算复杂,核心就是把那种逐渐趋于饱和的趋势用一个函数表达出来。你只要喂进去一些采样点,用最小二乘法一拟,拟出来的曲线贴合度还挺高的。 想系统了解的,推荐看看Logistic 回归那篇,讲得清楚,代码也直白;还有这篇使用 Fminspleas 进行 FMI 高效非线性回归拟合,对非线性优化做了比较细的拆解,适合搞深入点的同学。 用 MATLAB 跑起来的速度也挺快,
基于强化学习模型的选择数据拟合Matlab代码
该Matlab代码用于将强化学习模型拟合到选择数据。主要功能包括: example.m:提供了一个简单的学习用例,展示了如何在标准增量规则强化学习模型中使用该代码。 rlfit.m:接受一个用于计算动作值的函数句柄、选择和结果历史记录以及模型参数约束,进行模型拟合并返回对数似然、动作值和拟合参数。 multmin.m:使用多个随机起点进行模型拟合,以找到最佳参数。 LL_softmax.m:处理softmax选择函数的对数似然计算,并包含一些渐近展开式,以避免在极端情况下出现NaN。 Q_model.m:实现了一个具有单个参数(学习率)的标准增量规则强化学习模型。 用户需要提供一个函数,该