非线性时间序列
当前话题为您枚举了最新的非线性时间序列。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
matlab开发非线性时间序列异常值检测与替换方法
matlab开发:非线性时间序列异常值检测与替换方法。通过适当的局部值检测和替换,提高数据处理的准确性。
Matlab
7
2024-08-13
MATLAB实现各种非线性编程算法非线性优化算法详解
MATLAB实现了多种非线性编程算法,包括但不限于非线性优化算法。这些算法在处理复杂问题时展现出卓越的性能和灵活性。
Matlab
18
2024-07-19
基于分段线性方法的瓦斯浓度时间序列模式分析
基于分段线性方法的瓦斯浓度时间序列模式表示,挺适合用来一些时间序列数据挖掘问题,尤其是对于像瓦斯浓度这种具有波动特征的数据。直接用原始时间序列进行预测或者聚类,效率低还容易受到噪声干扰。但采用分段线性方法后,不仅能保留数据的主要形态,还能大幅降低存储和计算开销。嗯,这种方法能你更好地从海量数据中提取出有价值的信息,提高效率和准确性。如果你正在做类似的数据挖掘任务,可以试试这种方式。别忘了配合一些常用的时间序列挖掘库哦!
数据挖掘
0
2025-06-17
非线性优化问题探讨
详细讨论了运筹学中的非线性优化问题,内容清晰易懂,适合于数学建模学习。此外,文中还包含了解决实际问题的代码示例。
Matlab
9
2024-08-26
SAS时间序列分析
SAS 的时间序列,属于那种你用过一次就觉得“哦,原来可以这么干”的工具。它其实不难理解,就是把一堆按时间排的数拿来,去预测下一步要干嘛。挺适合做销量预测、网站访问量这类事儿。基本原理也不复杂。SAS 的套路是:先看趋势,再看波动,再加点统计方法,比如加权平均。简单来说,就是过去数据给多点权重,新数据靠后点,但整体来说,模型还蛮好调的。你可以试试XGBoost和LSTM来做时间序列预测,前者更偏向结构化数据,后者适合更复杂的时间依赖。比如你想预测明天的电量需求,用 LSTM 就挺合适。还有一些不错的参考资料我也整理出来了,像ForecastXGB的结合方式,还有用MATLAB实现的 CNN-B
统计分析
0
2025-06-25
BP神经网络非线性系统建模-非线性函数拟合
本资料可用于参考和学习。
算法与数据结构
22
2024-05-13
线性模型与时间序列分析:回归、方差分析、ARMA 和 GARCH
《线性模型与时间序列分析:回归、方差分析、ARMA 和 GARCH》[Paolella2018] 高清原版 PDF,已裁边优化阅读体验。如需恢复原始页面,可使用 PDF Xchange Pro 软件,操作步骤如下:1. 打开 PDF 文件。2. 点击左下角“选项” -> “视图” -> 页面缩略图(快捷键 Ctrl+T)。3. 在左侧面板中显示页面缩略图后,右键点击任意页面,选择“裁剪页面”(快捷键 Ctrl+Shift+T)。4. 在弹出的菜单中,点击“设为 0” -> (页码范围框中)选中“全部” -> 确定。
算法与数据结构
10
2024-05-21
非线性摆求解器的开发基于Matlab的非线性摆求解方法
介绍了基于Matlab开发的非线性摆求解器,使用有限差分格式进行求解。
Matlab
11
2024-08-30
NMLMSpectralEstimation MATLAB非线性谱估计
非线性信号的谱估计工具挺实用的,尤其是在噪声比较大的场景下还能保持稳定。嗯,核心文件Use_of_NMLM_Spectral_Estimation.m就是个示例脚本,用起来也还挺顺手。
里面还有spa_nml.m、spa_mlm.m、spa_corc.m这几个函数,各有特点,想要快速跑个结果就先试spa_nml.m吧,响应也快,参数也比较好调。
非参数过程谱估计其实就是不预设模型,直接从数据里看频谱,挺适合搞通信、声学、医学信号那种非平稳信号。比方说心电信号、地震波啥的,用这个就挺方便。
要提醒你哦,跑之前最好先看下license.txt,毕竟有的只能科研用不能商用。如果想更深入,也可以看看阈
Matlab
0
2025-06-29
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
21
2024-05-24