- 梳理常见开源技术方案,了解其原理及应用场景。
- 帮助产品经理全面了解大数据技术体系。
- 提升对复杂系统的理解,拓展认知边界。
大数据中台架构技术体系入门
相关推荐
美团大数据平台架构实战详解
近年来,随着技术的不断演进,美团的大数据平台架构在实战中展现出其独特的优势和应用价值。通过深入探讨美团大数据平台的实际运作,可以更好地理解其在解决实际问题和优化服务中的作用。
spark
16
2024-07-13
本来生活大数据技术方案体系化大数据架构与技术栈升级
本来生活的大数据方案挺有代表性的,尤其适合从传统数据库往大数据技术转型的团队。它从最早的 SQL Server 一路演进到 Hadoop,全程记录了从“小打小闹”到“体系化运作”的完整路线,技术栈升级也蛮全的,像Hive、Kafka、Storm、Elasticsearch都有用上,整合得还不错。
Hadoop 生态的升级挺有意思的,开始只是报表慢、数据杂的问题,后来一步步演变出了实时计算和智能。比如日志采集用Flume,消息队列用Kafka,再接个Storm做实时计算,逻辑就顺了。响应也快,数据效率一下子上来了。
HBase用来扛高并发写入场景,像是订单系统或者活动日志就比较适合它。搜索类应用
Hadoop
0
2025-06-15
Spark构建灵活扩展的大数据平台架构
Spark 的大数据平台架构,最大的优势就是灵活,扩展性也不错。想搞大数据,尤其是批流一体的那种,Spark 真的是个挺靠谱的选择。
Spark 的大数据平台架构,最大的优势就是灵活,扩展性也不错。想搞大数据,尤其是批流一体的那种,Spark真的是个挺靠谱的选择。
初学的话,可以先看看《大数据中台架构技术体系入门》,讲得比较基础,像数据采集、计算、存储这一套都覆盖了。你可以看看《美团大数据平台架构实战详解》,里面挺多实操内容,比如任务调度、资源管理那块,讲得还挺细。
搞用户行为?推荐你看看《大数据平台之用户行为平台》,配合Hive 架构一起看效果更好。数据仓库这块怎么建、分层怎么搞,里面都有讲
spark
0
2025-06-14
大数据时代的数据分析平台架构
随着互联网、移动互联网和物联网的蓬勃发展,我们已经置身于海量数据的时代。据数据调查公司IDC预测,到2011年,全球数据总量将达到1.8万亿GB。在这样的背景下,对海量数据进行精准分析已经成为一项非常紧迫的需求。
算法与数据结构
13
2024-07-17
大数据技术入门
本教材萃取自价值6千元的大数据培训课程精华,内容讲解细致深入,帮助对大数据领域感兴趣的学习者建立扎实的理论基础和实践能力,为未来职业发展奠定基石。
Hadoop
15
2024-06-11
Hive 体系架构:大数据用户行为分析基础
存储层:HDFS、Hive Warehouse、HBase
计算引擎层:Hive、Spark、MapReduce
元数据管理层:Hive Metastore
用户交互层:Hive CLI、Hive JDBC
Hive
14
2024-04-29
工业大数据技术架构详解
工业大数据技术架构白皮书是一份详细说明工业领域内大数据技术架构及其应用的指导文件。它由工业互联网产业联盟的工业大数据特设组发布,反映了该领域内的最新研究成果和应用实践经验。白皮书不仅讨论了大数据技术在工业环境中的核心地位,还提供了实际案例和具体技术组件的介绍,以及工业大数据系统建设的意义、目标、重点问题、架构实现等多方面内容。根据白皮书的内容,我们可以了解到以下知识点: 1. 工业大数据的定义和重要性:指的是在工业生产、运营过程中产生的大量数据的集合。这些数据来源于设备、传感器、控制系统和生产管理系统等,具有“4V”特征——大容量(Volume)、高速度(Velocity)、多样性(Varie
算法与数据结构
16
2024-10-31
大数据技术Hadoop入门介绍
大数据技术近年来在信息技术领域蓬勃发展,其中作为开源大数据处理框架的Hadoop扮演着核心角色。入门级别介绍Hadoop,探讨大数据的基本概念、特点、应用场景及其未来发展前景。大数据是指规模巨大、高速产生、多样化且信息密度低的数据资源,通常以4V特点描述:大量、高速、多样、低价值密度。其应用涵盖物流、零售、金融等多个领域,通过数据分析提高效率、降低风险。在企业内部,大数据部门负责数据收集、存储、处理和应用,支持业务决策。进入Hadoop介绍,它是Apache开发的分布式计算框架,解决大数据存储和计算问题,发展至今包括多个发行版本如Apache、Cloudera和Hortonworks版。
Hadoop
8
2024-08-15
魅族大数据流平台架构设计与部署实践
魅族的大数据流平台真的是一个挺值得关注的系统。它通过流平台架构将各类数据源、实时计算、离线存储、集群部署等有机结合,不仅可以高效海量数据,还能对数据进行深度挖掘和业务优化。平台里有多酷炫的技术,比如实时计算框架Spark和Storm,以及Kafka做数据缓存,简直像是大数据工程师的乐园。你要是正在做大数据相关的项目,流平台这块的设计挺值得借鉴的。毕竟,能在短时间内并大数据,真的是提升效率的利器。平台内的数据采集、流转、存储等模块的结合也挺紧密,给开发人员了大的灵活性。,这个大数据平台为决策支持、产品优化等方面了强有力的支持,能你更好地掌控数据流动的全过程,真的是一个高效而智能的系统。
数据挖掘
0
2025-06-14