黑色背景的 JD 大数据分享,内容扎实,讲的是怎么用大数据构建用户画像。整个流程讲得挺细,从数据采集到模型上线,像老司机带你复盘一套完整的实战方案。如果你最近正好在搞个性化推荐或者数据,这份资料还挺值的,建议收藏慢慢看,顺带还能拓展下对京东业务场景的理解。
JD大数据用户画像构建分享
相关推荐
大数据用户画像商业应用
用户画像的大数据应用,挺适合做商业的。用户在网上点的每一次、搜的每一个词、看过的页面,其实都在无声地“说话”。企业收集这些行为数据后,如果能建个靠谱的用户模型,那你就能从海量数据里挖出不少金矿。
数据拥有者的用户行为数据可不少,什么搜索记录、浏览路径、购买记录都一应俱全。你要做的,就是把这些碎片信息拼成一个完整画像。别怕难,核心思路其实就是:行为 → 特征 → 价值。
比如你做一个百货商场项目,可以参考百货商场会员用户画像;要是你在搭平台,像大数据平台用户行为这种例子还挺有用。
用户画像这块内容,技术上离不开Hive、标签系统、数据清洗这几个关键词,数据质量过硬了,建模才靠谱。你可以看看Hiv
spark
0
2025-06-15
用户画像构建指南
阐述用户画像构建的实践方法,涵盖设计流程和基础架构等关键要素。指导如何利用方法论构建用户画像系统,帮助企业深入了解目标用户。
算法与数据结构
13
2024-05-20
基于用户画像的大数据应用实践
个性化推荐
广告信用等级分群
用户流失预警
潜在游戏用户群体筛选
异常监控分析
算法与数据结构
15
2024-05-13
BDA大数据用户画像技能体系图
用户画像的技能体系图挺清晰的,适合刚入门大数据方向的前端或者数据工程师看看。图里基本把整个用户画像构建流程都串起来了,从数据采集、清洗,到标签体系,再到与应用,层次分明,能快速理清思路。
用户行为的套路说实话蛮多,但想做得好,离不开一个扎实的用户画像体系。这张图就像一本速查手册,帮你理出各个环节该干嘛、怎么干,比如标签体系的设计,不少人第一反应是枚举,但其实更推荐用分层+多维度拆解的方法,图里也有暗示这一点。
哦对了,如果你是做精准营销的,图中提到的用户分群跟行为偏好提取那块可以重点看。比如针对游戏行业,常用的 RFM 模型怎么落地?图里那几个模块串起来就是一条实用的路径。
想深入的可以顺着这
Hadoop
0
2025-06-25
游戏潜在用户分析:基于用户画像的大数据洞察
利用用户画像构建全量用户特征库,提取重要特征 f1、f2、f3...,并以游戏转化用户为正样本进行模型训练。通过特征匹配,从画像库中筛选出潜在用户群体,为 CP 提供精准营销建议。算法采用逻辑回归 p(c|u),进行潜在群体预测。
算法与数据结构
14
2024-05-01
大数据时代下的用户画像技术与精准营销
文章介绍了用户画像技术在目标客户识别、消费者行为分析和精准化推送等方面的重要作用,帮助企业利用大数据实现营销策略的个性化和精细化。通过多维度数据的收集和分析,企业能够准确描绘出目标客户的特征和需求,从而优化产品推广和服务优化,提高市场竞争力。
算法与数据结构
7
2024-09-16
用户画像系统中的用户画像
用户画像概述
用户画像,通过不同数据维度刻画用户,利用数据分析为用户打上语义标签,将用户的行为和偏好抽象成多元化的人物标签,构建用户实体。
用户画像可以使用语义化表示,例如:
基础属性: 性别(男、女)、职业(学生、老师、白领)
价值属性: 高价值、中价值、低价值客户
用户画像也可以使用数学建模,将标签视为特征空间的维度变量,用户画像则表示为特征空间中的稀疏向量。
用户画像的应用
用户画像在互联网行业应用广泛,因为它可以定性和定量地描述用户:
定性: 抽象概括用户的生活场景和使用场景
定量: 统计分析用户的行为数据,挖掘核心用户价值
用户画像的动态性
用户画像的结果受数据动态变化影响
spark
11
2024-05-12
基于用户画像的大数据挖掘实践用户行为分析与推荐优化
基于用户画像的大数据挖掘实践真的是一个挺不错的资源,尤其是对于大数据开发和的同学。它主要聚焦于如何通过构建精准的用户画像来提升数据挖掘的效果,更好地理解用户行为、偏好等内容。比如,像电商平台、社交网络这类产品,能够通过用户画像来个性化推荐,提升用户体验。并且,文中还列出了多关于大数据的相关应用,像个性化推荐系统架构、JD 的用户画像构建等,都是业内的经典案例。嗯,如果你对大数据应用、个性化推荐这些技术有兴趣,看看这份资源肯定不会错。
算法与数据结构
0
2025-06-16
用户画像解决方案视频课程分享
学习如何构建精准的用户画像,洞悉用户需求与行为,助力产品策略优化和精细化运营。欢迎学习用户画像解决方案视频课程。
spark
14
2024-05-12