数据挖掘的信用卡欺诈检测应用还挺火,尤其是和机器学习搭配的时候,准确率提升。这篇回顾论文算是把主流的做法都梳理了一遍,包括分类算法的优缺点、各种模型在不同数据集上的表现,还有一些优化思路。对你想快速入门或者找点新思路来说,还蛮有参考价值的。尤其像逻辑回归
、随机森林
、神经网络
这些方法在不同案例里的对比,挺直观的。
信用卡欺诈检测基于数据挖掘分类技术与机器学习算法的研究回顾
相关推荐
基于逻辑回归的信用卡欺诈检测优化
信用卡欺诈是指未经授权的信用卡交易,不仅危害用户财产安全,也给金融机构带来巨大损失。随着电子支付方式的普及,欺诈行为变得更加复杂频繁。建立高效准确的欺诈检测系统至关重要。逻辑回归作为广泛应用于分类问题的统计模型,在信用卡欺诈检测中有着重要应用。通过数据预处理和类别不平衡问题的解决,逻辑回归可以有效区分正常和欺诈交易。优化模型评估和调整阈值是提高检测效果的关键步骤。
算法与数据结构
14
2024-08-25
CA683数据分析与数据挖掘评估信用卡欺诈检测模型
CA683数据分析和数据挖掘评估信用卡欺诈检测模型。提交者:第44组Rakesh Reddy Soma(学生ID:20210927),Akshara Kandimalla(学生ID:20211387),Priyanka Sharma(学生ID:20214753),Mridula Sharma(学生ID:20214750)。要下载信用卡数据集的CSV文件,请访问以下链接:CA683 DA AND DM ASSIGNMENT文件夹中的DA_and_DM_Assignment.ipynb笔记本。
数据挖掘
14
2024-07-17
基于机器学习的数据挖掘算法研究
数据挖掘是从海量数据中提取有价值知识的过程,其中决策树作为一种广泛应用的机器学习算法,被广泛应用于实际问题中。本研究详细探讨了基于决策树的数据挖掘算法的技术原理、实现方法及其在不同领域的应用。决策树通过一系列规则划分数据集,构建分类模型,适用于信用评估、医疗诊断等多个领域。研究还探讨了决策树算法的优势和局限性,以及相关的改进策略如CART和随机森林等。
数据挖掘
16
2024-07-20
银行信用卡欺诈与拖欠行为分析
讨论了银行信用卡欺诈与拖欠行为的数据挖掘实用案例分析,是大数据课程中的一个重要案例。作者是复旦大学的赵卫东博士。
数据挖掘
10
2024-07-25
信用卡客户信用评价数据挖掘方法分析
以对商业银行信用卡历史客户数据为研究对象,介绍了数据挖掘方法中决策树C4.5算法和关联规则Apriori算法的应用,并通过weka软件进行实证分析,从而为银行信用卡客户信用程度评定提供了决策支持。
数据挖掘
14
2024-10-31
信用卡业务数据挖掘与风控建模
信用卡业务涉及的系统和数据应用挺多的,了解得好能帮你更好地应对复杂的金融场景。比如,信用卡业务的**风控**和**数据**两个领域,都是金融行业里重要的应用方向。说到信用卡数据,推荐你看看以下这些资源,挺实用的:比如关于**信用卡欺诈检测**的研究,或者**信用卡违约率建模**,都能你在实际项目中更加得心应手。如果你是做数据挖掘的,这些内容也挺适合你,能帮你深入了解客户行为模式,优化风控策略。
,你可以从**信用卡客户信用评价数据挖掘方法**这篇文章入手,学到不少数据挖掘的技巧。,**创新的信用卡业务智能方案**会给你一些前沿的技术应用方向。如果你需要深入了解风控建模流程,可以阅读**金融风控
数据挖掘
0
2025-06-17
基于数据挖掘的信用卡风控方案设计
数据挖掘的信用卡管理方案,确实是个宝藏资源。讲得挺细,从模型选型到风险都有覆盖。像CHAID、logistic 回归这些常用算法都讲得蛮清楚,适合要做风控系统原型或者挖掘客户价值的你入门。文档里还列了十几种业务模型,对应场景一目了然,拿来参考合适。如果你也刚好在搞信用卡系统建模,这套方案你真得看看。
数据挖掘
0
2025-06-17
神经网络应用于信用卡反欺诈系统的研究
神经网络技术在信用卡反欺诈系统中的应用正在受到广泛关注和研究。随着技术的进步,这一系统在提高欺诈检测效率和精确度方面展现出了巨大潜力。
Oracle
11
2024-09-19
R语言信用卡违约率建模九种机器学习方法实现
信用卡违约率的建模其实挺有意思的,用 R 来搞机器学习也比你想象的要顺手多了。文档里用到了九种算法,像KNN、逻辑回归、随机森林、神经网络这些常见方法都一网打尽。数据集是比较经典的defaultofcreditcardclientsDataSet,3 万条记录,24 个特征变量,像信用额度、婚姻状况、过去六个月的还款记录都有,挺适合练手的。而且每种方法都配了 R 的实现代码,思路也清晰,像逻辑回归用glm(),决策树用rpart,你基本照着写就能跑。响应变量是个二分类,起来不复杂。有意思的是还讲了一下怎么调参,比如用AUC、F1 分数这些指标来评估模型表现,调起来更有方向。不仅代码写得规范,也
算法与数据结构
0
2025-06-15