CA683数据分析和数据挖掘评估信用卡欺诈检测模型。提交者:第44组Rakesh Reddy Soma(学生ID:20210927),Akshara Kandimalla(学生ID:20211387),Priyanka Sharma(学生ID:20214753),Mridula Sharma(学生ID:20214750)。要下载信用卡数据集的CSV文件,请访问以下链接:CA683 DA AND DM ASSIGNMENT文件夹中的DA_and_DM_Assignment.ipynb笔记本。
CA683数据分析与数据挖掘评估信用卡欺诈检测模型
相关推荐
信用卡客户信用评价数据挖掘方法分析
以对商业银行信用卡历史客户数据为研究对象,介绍了数据挖掘方法中决策树C4.5算法和关联规则Apriori算法的应用,并通过weka软件进行实证分析,从而为银行信用卡客户信用程度评定提供了决策支持。
数据挖掘
14
2024-10-31
银行信用卡欺诈与拖欠行为分析
讨论了银行信用卡欺诈与拖欠行为的数据挖掘实用案例分析,是大数据课程中的一个重要案例。作者是复旦大学的赵卫东博士。
数据挖掘
10
2024-07-25
基于逻辑回归的信用卡欺诈检测优化
信用卡欺诈是指未经授权的信用卡交易,不仅危害用户财产安全,也给金融机构带来巨大损失。随着电子支付方式的普及,欺诈行为变得更加复杂频繁。建立高效准确的欺诈检测系统至关重要。逻辑回归作为广泛应用于分类问题的统计模型,在信用卡欺诈检测中有着重要应用。通过数据预处理和类别不平衡问题的解决,逻辑回归可以有效区分正常和欺诈交易。优化模型评估和调整阈值是提高检测效果的关键步骤。
算法与数据结构
14
2024-08-25
神经网络应用于信用卡反欺诈系统的研究
神经网络技术在信用卡反欺诈系统中的应用正在受到广泛关注和研究。随着技术的进步,这一系统在提高欺诈检测效率和精确度方面展现出了巨大潜力。
Oracle
11
2024-09-19
信用卡客户流失数据集引用详解
中引用的信用卡客户流失数据集详细分析了不同用户群体的流失趋势与相关因素,为企业提供有效的客户流失预防策略。该数据集包含多维度的用户特征和行为数据,帮助预测潜在的流失客户群体。
MySQL
16
2024-10-26
数据挖掘数据分析资料
共享数据分析学习资料,共同进步。祝学习愉快,万事顺遂!
数据挖掘
22
2024-04-29
金融风控信用卡评分建模流程
信用风险定义风险管理概念始于美国,后随着互联网和新技术的兴起而普及。大数据和机器学习技术让风险管理更加精准。信用风险评分卡类型未提及。信用评分模型建立的基本流程1. 数据收集:收集银行征信数据和用户互联网数据(人际关系、消费行为、身份特征等)。2. 数据处理:对数据进行清洗、转换和特征工程。3. 模型构建:选择合适建模算法,训练模型。4. 模型评估:评估模型的预测能力和稳定性。5. 模型部署:将模型部署到生产环境,用于授信产品的风控。
数据挖掘
18
2024-05-01
信用卡数据集市的建模方法论
在信用卡数据集市的建设过程中,有效的数据仓库建模方法至关重要。
算法与数据结构
16
2024-07-31
深入理解数据挖掘与数据分析
数据分析是通过适当的统计分析方法对收集到的数据进行分析、概括和总结的过程,目的是提取有用信息支持决策。数据挖掘则通过算法从海量数据中发现隐藏的规律和知识,其目标在于挖掘数据中的重要价值。尽管二者有着明显的区别,但在现代信息技术中密切联系,共同推动着大数据时代的发展。
数据挖掘
11
2024-08-09