如果你在做时间序列,尤其是想挖掘数据中的隐周期和非线性模式,可以试试这篇基于小波的时间序列数据挖掘方法。小波和 ARMA 模型结合,用来滤波并提取数据的各种特征。它的优势在于能将小波分解序列的特性应用到神经网络和自回归模型中,从而提高预测准确性。通过重构技术,它把不同尺度的预报结果结合,得到最终的时间序列预测。实验验证了方法的有效性。嗯,如果你正在做类似的预测工作,可以参考一下这篇文章的实现。