为了从业务角度评价和优化网络性能,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法。该方法以网络业务为分析对象,利用网络业务流的时态属性和路径属性作为约束条件,对大量的历史数据进行挖掘分析。在关联规则挖掘过程中,通过引入事务标号,同时计算候选频繁项集的支持度,避免了传统的数据库扫描操作,极大提高了挖掘效率和速度。实验结果表明,随着挖掘数据量的增加,该方法的性能和效率得到了显著提升。
基于网络业务流的数据挖掘分析方法(2008年)
相关推荐
基于RoughSet的医疗数据挖掘应用分析(2008年)
利用基于区分矩阵的计算方法简化了从病历样本数据出发的医疗信息处理过程,使其更为高效和便捷。所得的产生式分类规则简明易懂,具有实际应用的参考价值。
数据挖掘
15
2024-07-16
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
8
2024-09-13
基于数据挖掘的个人银行业务客户行为分析
基于数据挖掘的个人银行业务客户行为分析
摘要
本研究利用数据挖掘技术,深入分析银行个人客户的行为模式。通过探究客户的交易数据、产品使用情况以及其他相关信息,识别客户的金融需求和偏好,为银行制定精准的营销策略和风险管理措施提供支持。
主要内容
数据收集与预处理: 从银行内部系统和外部数据源获取客户数据,并进行清洗、整合和转换,构建分析所需的数据集。
客户细分: 运用聚类、分类等数据挖掘算法,将客户群体划分为具有不同特征的细分市场,以便进行差异化服务。
行为模式识别: 分析客户的交易频率、金额、渠道偏好等行为特征,识别客户的金融需求和潜在风险。
预测模型构建: 建立预测模型,预测客户未来的行为,
数据挖掘
18
2024-04-30
基于视角的空间数据挖掘方法 (2006年)
为了满足用户在不同场景下对空间数据挖掘的个性化需求,该研究提出了空间数据挖掘视角的概念。该视角能够在明确具体数据挖掘需求的基础上,利用相应的数据挖掘算法,从海量空间数据中提取不同粒度的空间知识。研究首先深入探讨了空间数据挖掘视角的内涵和外延,进而提出了一系列相应的算法,最后将该视角应用于滑坡监测数据的实际挖掘中,取得了令人满意的效果。
数据挖掘
17
2024-05-29
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
7
2024-08-18
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后
算法与数据结构
16
2024-05-23
基于系统云灰色预测的数据挖掘方法研究(2004年)
探讨了系统云灰色预测模型的构建原理,并详细论证了其积分生成机制。进一步深入研究了解析预测公式的应用,特别结合数据库中“贫”信息和小样本序列数据的特征。通过实例分析,比较了解析预测与离散预测的效果,凸显了其简便、详尽和直观的优势。
数据挖掘
12
2024-07-31
社交网络数据挖掘与分析
社交网络数据挖掘与分析是指运用数据挖掘技术从社交网络数据中提取有价值信息的过程。社交网络平台积累了海量用户数据,包括用户个人信息、社交关系、兴趣爱好、行为轨迹等。通过数据挖掘技术,可以发现用户行为模式、社交网络结构特征、信息传播规律等,为用户画像、精准营销、舆情监测等应用提供数据支持。
社交网络数据挖掘与分析主要涉及以下几个方面:
数据收集: 从社交网络平台获取原始数据,例如用户帖子、评论、点赞、转发等。
数据预处理: 对原始数据进行清洗、转换、整合,使其符合数据挖掘算法的要求。
特征提取: 从预处理后的数据中提取有价值的特征,例如用户活跃度、影响力、情感倾向等。
数据分析: 运用数据挖掘算
数据挖掘
10
2024-05-31
数据挖掘:2008 年应用领域概览
数据仓库与数据挖掘基础
数据仓库作为数据挖掘的基础,为其提供强大的数据存储和分析能力。数据挖掘技术则利用统计学、机器学习等方法,从海量数据中提取隐藏的、有价值的信息。
数据挖掘的现实应用
超市
通过分析顾客购物篮数据,超市可以优化商品摆放、制定精准营销策略,提升销售额和顾客满意度。
图书馆管理
数据挖掘帮助图书馆分析借阅模式、用户偏好,从而优化馆藏结构、推荐相关书籍,提升服务效率。
保险金融业
在风险评估、欺诈检测、客户关系管理等方面,数据挖掘为保险金融机构提供数据驱动的决策支持。
产品制造业
从产品设计、生产流程到质量控制,数据挖掘帮助制造企业提高效率、降低成本、提升产品质量。
数据挖掘
16
2024-05-25