数据挖掘的定义说白了就是——从一堆杂乱无章的数据里,扒出那些你之前根本没注意到但其实挺有用的东西。嗯,像是你平时用的购物推荐、刷视频的算法,其实背后都有它的身影。

数据挖掘的核心,就是在大量、不完整甚至有点脏的数据中,找出有用的“知识”。不是要求你找个百分百正确的答案,而是看出趋势、抓住规律。比如电商平台想知道哪个商品会爆,靠的就是它。

涉及的领域也蛮广,像机器学习神经网络数理统计这些都和它脱不了关系。如果你是前端开发者,平时用得不多,但了解一下原理和思路,对做数据可视化或者跟后端协作有。

数据源这块,必须是真实的大数据,还得能接受有点脏。嗯,不能想着干干净净的数据喂你看——现实里哪有那么理想。你得能缺失值、噪声数据,能提取有价值的信息才算靠谱。

如果你想继续挖深一点,可以看看下面几个资源。数据挖掘和机器学习这个讲得比较清楚,尤其适合刚入门的你。