想要更高效地发现网络中有组织的犯罪集团?基于共犯网络结构的有组织犯罪集团挖掘方法,用方式你识别和犯罪团伙的潜在关系。通过构建共犯网络模型,结合数据挖掘方法,它能够揭示那些隐秘的犯罪链条。
其实,你只要通过数据输入,它就能帮你出不同个体之间的联系。如果你正在做类似的安全工作,这个方法挺适合你。
例如,如果你负责社区安全项目,这个方法可以你快速找到潜在的威胁并可行的预防方案。使用时,也可以结合一些辅助工具,比如MATLAB
的神经网络模型,进一步优化效果。
,如果你对数据挖掘有点了解,掌握这个方法会让你的工作更高效,也能提升你的技术实力。只要注意做好数据收集,其他的基本就不难了。
基于共犯网络结构的有组织犯罪集团挖掘方法数据挖掘与犯罪识别
相关推荐
基于距离和的孤立点挖掘算法数据挖掘与异常点识别
基于距离和的孤立点挖掘算法挺实用的,尤其在数据挖掘中找出那些与众不同的点,能更好地识别异常行为。算法的核心就是计算每个数据点与其他点的距离和,距离和越大,就越有是孤立点。这里面有个小技巧,就是需要用像欧几里得距离这种常见的度量方式,也可以用曼哈顿距离等根据需要调整。步骤也蛮,预数据、计算距离、设置一个阈值,超出这个值的就是孤立点。不过这也有挑战,计算量大时需要一些优化手段,比如 KD 树来加速计算。,这种算法能高维数据,挺适合大数据集应用。你要是需要深入理解,研究一下代码实现和数据集就能更清楚了。
数据挖掘
0
2025-07-01
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
8
2024-09-13
基于层次的聚类方法数据仓库与数据挖掘原理及应用
基于层次的聚类方法是一种无需预先设定聚类数但需要终止条件的方法。在这类方法中,聚类的过程可以通过自底向上(AGNES)或自顶向下(DIANA)的方式进行。
数据挖掘
8
2024-07-17
聚类算法数据挖掘应用
数据挖掘里的聚类算法,蛮像给一堆杂乱数据贴标签。没监督、没预设分类,全靠算法自己“看眼色”分组。你常听的 K-means、DBSCAN、层次聚类这些,其实都挺有用,尤其是数据量一大,一些算法还真挺考验性能的。像DBSCAN那种,对带噪声的数据还挺友好,密度高的就抱一团,孤零零的直接丢一边,清爽利落。哦对,如果你玩的是高维数据,可以看看SOM或Spectral Clustering,效果比传统算法靠谱多了。建议先挑熟的上手,等摸清套路再折腾那些参数敏感的,不然调参能把人劝退。
数据挖掘
0
2025-06-23
基于网络业务流的数据挖掘分析方法(2008年)
为了从业务角度评价和优化网络性能,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法。该方法以网络业务为分析对象,利用网络业务流的时态属性和路径属性作为约束条件,对大量的历史数据进行挖掘分析。在关联规则挖掘过程中,通过引入事务标号,同时计算候选频繁项集的支持度,避免了传统的数据库扫描操作,极大提高了挖掘效率和速度。实验结果表明,随着挖掘数据量的增加,该方法的性能和效率得到了显著提升。
数据挖掘
12
2024-08-04
网络数据挖掘
Bing Liu 著
数据挖掘
11
2024-05-13
CHAMELEON算法数据挖掘聚类技术与应用
CHAMELEON 算法是个挺有意思的算法,适合数据挖掘中的聚类问题。它的核心思想是通过两个阶段来数据,用图分割算法把数据切割成小块,再用层次聚类反复合并这些块,直到结果满意。这个算法适合复杂的、动态变化的数据集,尤其在你需要动态调整数据结构时效果比较好。其实,多数据科学项目都能用上它,是在做聚类时,能够你找出数据之间的隐藏关联。CHAMELEON可以各种各样的聚类情况,是对于不同密度的数据,效果还不错。如果你要做类似的工作,可以看看这个算法的实现,挺实用的。
Hadoop
0
2025-06-14
FP-array在计算机犯罪电子证据挖掘中的高效应用
在现代社会计算机犯罪中,电子证据的收集面临较大挑战,尤其在海量电子证据之间的相关性分析上难度显著。通过对基于FP-Tree的最大频繁模式(FP-Max)挖掘算法的优缺点进行深入分析,针对FP-Max算法的局限性,结合实际提出了一种新的高效关联规则挖掘算法——通过构建FP矩阵的FP-array来提升挖掘性能。该算法的创新性在于,能够在典型的计算机犯罪电子证据中实现数据的关联性挖掘,有助于分析常见的五类计算机犯罪数据。这一挖掘结果将为实际的案件侦破提供关键参考。
数据挖掘
13
2024-10-29
RBF 神经网络网络结构
输入层:感知单元连接网络和环境隐含层:非线性变换,输入空间到隐层空间输出层:线性,响应训练数据
数据挖掘
20
2024-04-30