异常检测技术的核心在于发现“不正常”的行为或者数据流。对前端来说,虽然不是直接对接这块,但理解这些概念,比如统计学方法、数据挖掘模型,对构建更安全的系统前端架构也蛮有的。尤其是你做管理后台、监控面板时,多数据可视化就靠这些底层逻辑撑着。
异常检测信息安全检测技术
相关推荐
信息安全检测技术的主要方法
基于统计的方法、专家系统、神经网络、数据挖掘、遗传算法、计算机免疫技术等,是信息安全检测技术的主要手段。
数据挖掘
10
2024-08-08
信息安全检测技术IDS的功能与应用
随着技术的进步,入侵检测系统(IDS)在信息安全领域发挥着关键作用。它能够监控、分析用户和系统活动,发现入侵企图或异常现象,审计系统配置和弱点,评估关键系统和数据文件的完整性,对异常活动进行统计分析,并识别攻击活动模式,实时报警和主动响应。
统计分析
14
2024-07-17
数据分析协同-(网络与信息安全-入侵检测技术)
数据分析协同入侵检测不仅需要利用模式匹配和异常检测技术来分析某个检测引擎所采集的数据,以发现一些简单的入侵行为,还需要在此基础上利用数据挖掘技术,分析多个检测引擎提交的审计数据以发现更为复杂的入侵行为。在综合使用多个检测技术的基础上,可以发现各种常见的、典型的攻击行为。
数据挖掘
14
2024-07-15
网络与信息安全入侵检测技术的统计分析
在网络与信息安全领域,统计分析方法首先创建系统对象的统计描述,包括用户、文件、目录和设备等的测量属性,如访问次数、操作失败次数和延时等。这些属性的平均值用于与系统正常行为进行比较,当观察值超出正常范围时,可能发生入侵。
统计分析
12
2024-07-16
异常检测技术综述
异常检测是数据和机器学习中不可忽视的一部分,是在大量时序数据或高维数据时,了解和使用合适的检测方法重要。如果你对这个话题感兴趣,以下这些资源都挺不错的,你更好地理解和实现异常检测。
异常入侵检测技术探究这篇文章通过深入不同的入侵检测方法,你理解网络安全中的异常行为探测。点击查看。
对于时序数据的异常检测,pyculiarity是一个有用的工具,它支持各种时序数据的异常检测和可视化,你可以在这篇文章中找到详细的使用指南:点击查看。
如果你用的是 Matlab,可以试试iForest的异常检测代码。它是基于孤立森林算法,适用于大数据集的异常检测,下载链接:点击查看。
除了这些,还有多与异常检测相关
数据挖掘
0
2025-06-15
异常入侵检测技术探究
异常入侵检测技术探究
异常入侵检测,作为网络与信息安全领域的至关重要一环,其主要方法包括:
统计异常检测: 通过建立系统正常行为的统计模型,识别偏离模型的异常行为。
基于特征选择的异常检测: 提取网络流量或系统行为的关键特征,利用特征差异识别异常。
基于贝叶斯推理的异常检测: 利用贝叶斯定理计算事件发生的概率,判断异常出现的可能性。
基于贝叶斯网络的异常检测: 构建网络结构表达变量之间的依赖关系,通过概率推理进行异常检测。
基于模式预测的异常检测: 学习正常行为模式,预测未来行为,将与预测不符的行为判定为异常。
基于神经网络的异常检测: 利用神经网络强大的自学习能力,构建模型识别复杂
数据挖掘
17
2024-05-23
高维数据中的异常检测-综述异常检测方法
高维数据的异常探测方法由Aggarwal和Yu (SIGMOD’2001)提出。该方法将高维数据集映射到低维子空间,通过评估子空间中数据的稀疏性来识别异常数据。
算法与数据结构
14
2024-07-22
R语言异常检测技术与实战应用
R 语言的异常检测功能真的是数据里少不了的一环。像单变量和多变量检测,配合时间序列的场景,真的实用,尤其是金融、传感器这些领域的数据时。方法多,工具全,响应还挺快,挺适合做一线数据清洗的。
R 语言中的异常检测挺好用的一点是,多模型都是现成的,像基于模型的检测,你只要稍微懂点回归或聚类,就能玩得转。嗯,像tsoutliers这种包,用起来蛮方便,自动化也比较高。
如果你碰到时间序列的数据,建议优先用一些带窗口机制的方法,比如滑动平均、季节性分解。稳定性强,误判率低。对了,多变量时间序列的维度简化这篇讲得蛮细,可以去看看。
还想多了解点?可以顺手看看异常检测技术综述,里面把各类方法都盘了一遍,适
算法与数据结构
0
2025-06-17
基于统计学习的网络异常检测技术
基于统计学习的网络异常行为检测技术,挺适合你深入了解 APT 攻击的检测方式,尤其是对大数据感兴趣的同学。它不是那种光说理论的文章,里面讲了不少实战例子,比如怎么命令控制通道,怎么做统计建模,实用性还蛮强。
APT 攻击的威胁现在越来越隐蔽,靠传统的特征匹配早就不够用了。基于统计学习的异常检测,就是用数据说话,比如用一些行为参数建模,看哪个点突然飙高或者异常,那多半就是有问题了。
文里讲的技术路线比较清晰,从参数提取到统计建模,每一步都不绕弯子,像是命令控制、数据传输这些攻击路径都能拿来做案例。你要是搞过机器学习或者大数据,理解起来会挺顺的。
另外,它还总结了基于大数据的检测优缺点,像能力强、
统计分析
0
2025-06-16