数据分析协同入侵检测不仅需要利用模式匹配和异常检测技术来分析某个检测引擎所采集的数据,以发现一些简单的入侵行为,还需要在此基础上利用数据挖掘技术,分析多个检测引擎提交的审计数据以发现更为复杂的入侵行为。在综合使用多个检测技术的基础上,可以发现各种常见的、典型的攻击行为。
数据分析协同-(网络与信息安全-入侵检测技术)
相关推荐
网络与信息安全入侵检测技术的统计分析
在网络与信息安全领域,统计分析方法首先创建系统对象的统计描述,包括用户、文件、目录和设备等的测量属性,如访问次数、操作失败次数和延时等。这些属性的平均值用于与系统正常行为进行比较,当观察值超出正常范围时,可能发生入侵。
统计分析
12
2024-07-16
信息安全检测技术的主要方法
基于统计的方法、专家系统、神经网络、数据挖掘、遗传算法、计算机免疫技术等,是信息安全检测技术的主要手段。
数据挖掘
10
2024-08-08
信息安全检测技术IDS的功能与应用
随着技术的进步,入侵检测系统(IDS)在信息安全领域发挥着关键作用。它能够监控、分析用户和系统活动,发现入侵企图或异常现象,审计系统配置和弱点,评估关键系统和数据文件的完整性,对异常活动进行统计分析,并识别攻击活动模式,实时报警和主动响应。
统计分析
14
2024-07-17
入侵检测:超越防火墙的网络安全
导言前言致谢第 1 部分:入侵检测前:传统计算机安全第 1 章:入侵检测和经典安全模型回到基础:经典安全模型计算机安全目标学会提出难题一个基本的计算机安全模型参考监视器什么构成了一个好的参考监视器进一步增强安全模型识别与身份验证 (I&A)访问控制审计使用对入侵检测点头的分类安全产品识别与身份验证访问控制扫描器入侵检测和监控其他产品差异入侵检测中的预防、检测和响应从这里去哪里第 2 章:识别和身份验证在您的环境中的作用UNIX 中的识别和身份验证用户和组超级用户UNIX 中的主体是什么?UNIX 登录UNIX 密码机制将密码存储在中央服务器中**识别和身份验证
Access
15
2024-05-20
数据挖掘与信息安全探讨
广工大四专业课课程PPT探讨了数据挖掘和信息安全两门课程的关键内容。
数据挖掘
14
2024-08-09
数据挖掘与信息安全综述课件
结合大数据和云服务
内容概述
数据挖掘
16
2024-05-01
异常入侵检测技术探究
异常入侵检测技术探究
异常入侵检测,作为网络与信息安全领域的至关重要一环,其主要方法包括:
统计异常检测: 通过建立系统正常行为的统计模型,识别偏离模型的异常行为。
基于特征选择的异常检测: 提取网络流量或系统行为的关键特征,利用特征差异识别异常。
基于贝叶斯推理的异常检测: 利用贝叶斯定理计算事件发生的概率,判断异常出现的可能性。
基于贝叶斯网络的异常检测: 构建网络结构表达变量之间的依赖关系,通过概率推理进行异常检测。
基于模式预测的异常检测: 学习正常行为模式,预测未来行为,将与预测不符的行为判定为异常。
基于神经网络的异常检测: 利用神经网络强大的自学习能力,构建模型识别复杂
数据挖掘
17
2024-05-23
国防安全网络大数据分析与应用系统探讨
在调查国内外大数据分析与应用的最新研究进展后,针对国防安全业务体系中数据碎片化、不规范和难以共享等问题,提出了面向国防安全的网络大数据分析与应用解决方案。该方案有效结合了国防安全实际需求和大数据技术,充分利用大数据技术在多源数据融合、深度安全信息挖掘及信息共享方面的优势,并能快速适应现有业务体系,以实现实际效益。此外,详细介绍了面向国防安全的网络大数据挖掘与分析相关技术。
数据挖掘
15
2024-08-22
优化数据分析与挖掘技术
数据分析和数据挖掘是从数据中提取有价值信息的关键技术,尽管二者有相似之处,但在方法和应用上存在显著差异。数据挖掘通常需要编程技能来实现,而数据分析则更多依赖于现有分析工具。在行业知识方面,数据分析需要深入理解特定行业并将数据与业务结合,而数据挖掘则注重技术和数学计算。尽管如此,它们都涉及从大数据中提取信息,以支持决策和创新。
数据挖掘
17
2024-07-13