聚类是数据挖掘中的重要方法,在图像处理、数据压缩和模式识别等领域发挥着关键作用。随着无线通信技术的快速发展,对道路网络中移动物体行为分析的需求日益增长,为智能交通系统提供了重要数据基础。
道路网络中移动物体聚类方法及应用
相关推荐
Matlab开发实时追踪移动物体
这段代码实现了对移动对象的实时跟踪。
Matlab
18
2024-07-18
城市道路网络交通小区划分方法研究空间统计分析应用
城市路网的自动划分方法,挺适合做交通类可视化项目的数据预。交通小区的划分,说白了就是把一大片城市道路“分组”,让你后续做流量、路径优化的时候不至于一锅乱炖。用的还是空间统计那一套,像什么空间聚类、空间关联矩阵,都上了。文里提的流程蛮清晰,先建模、再搞算法,用上海市浮动车数据来实测,整个思路还蛮工程化的。如果你平时用ArcGIS、做大数据可视化,那这篇算是个不错的思路来源。而且,它还有点像前端里咱们做图层分组、热力图区域划分那味儿,逻辑蛮像。比如你想用D3.js或Mapbox可视化交通热点,这类交通小区的划分数据就有用了。建议你先看下相关的统计方法链接,比如 空间统计 和 聚类,对理解整个思路挺
统计分析
0
2025-06-25
运动物体GPS跟踪优化Kalman滤波消除多普勒频移影响
随着物体运动状态下技术的发展,我们采用Kalman滤波方法来优化GPS跟踪过程,特别是消除多普勒频移对准确性的影响。我们的程序使用Matlab编写,适用于提高运动物体的跟踪准确性。
Matlab
20
2024-09-27
δ-开放集聚类拓扑聚类方法
δ-开放集的聚类思路还蛮有意思的,尤其适合那种形状不规则、数据分布不太平均的复杂数据集。你只要输入一个δ值,它就能帮你把数据切得细致,还能自动识别噪声点,挺智能的。
不光能高维数据,在 Olivetti 人脸数据库上的表现也不错。比起那些只能球形簇的传统方法,比如 K-means,它更像是“拓扑流派”的聚类方式,玩法不一样。
哦对了,它还有个升级版,能搞定那种密度差别大的数据集。如果你平时喜欢玩模式识别、数据挖掘、聚类这一类的算法实验,可以试试它,是在人脸、图像、或者非结构化数据时。
有需要的话,下面这些资源你也可以顺手看看,有代码也有讲义,挺全的:
聚类工具-MATLAB 模式识别应用
数据挖掘
0
2025-06-18
网络攻击分类方法
攻击方法分类是安全研究的重要课题,它对于漏洞的定性和数据挖掘分析具有重要意义。系统安全漏洞分类法主要有两种:RISOS分类法和Aslam分类法。此外,针对TCP/IP协议族的攻击也存在多种分类方法。
数据挖掘
11
2024-05-19
Matlab应用智能卡车的聚类方法研究
Matlab应用:利用k-均值聚类、模糊c-均值聚类和SOM神经网络对智能卡车进行色彩还原和量化分析。
Matlab
14
2024-08-19
聚类方法评价标准与数据挖掘应用
聚类的评价标准,说实话是搞无监督学习绕不开的一关。你用了KMeans,结果和别人不一样?嗯,这就是评估手段不到位的问题了。文章里讲得挺细,什么不同算法、不同初始参数都能让结果变样,确实挺真实。还有个重点:哪怕是同一个模型,只要初始条件一变,聚出来的类别也完全不是一回事。这种情况在实战里经常碰到,尤其做用户画像那种,一不注意就偏了。
Hadoop
0
2025-06-29
密度聚类方法DBSCAN、OPTICS、DENCLUE
基于密度的聚类方法的思路挺巧妙,不靠你事先指定簇的个数,而是看哪里数据密集就往哪儿凑。像DBSCAN、OPTICS、DENCLUE这些算法,都能搞定各种不规则的簇形,噪声点也还不错。
DBSCAN的逻辑蛮:找邻居、看密度,够密就拉进来一起玩,太稀就当噪声。适合用来图片区域、地理坐标、甚至是社交网络的社群划分。
OPTICS就比 DBSCAN 细腻点,在数据密度变化大的时候挺实用,排序之后你再来观察哪里是簇,挺有意思的。
DENCLUE是基于数学密度函数来的,思路有点偏学术,但优势是对复杂数据形态的捕捉更强,适合你那种非均匀分布的数据。
资源方面我翻了下,有不少现成的实现,Matlab、Pyth
算法与数据结构
0
2025-07-02
图像分割中的聚类方法
利用聚类算法识别图像分割的阈值,并使用 MATLAB 进行图像分割。
Matlab
12
2024-05-13