K 均值的 K 值怎么选?这是多做聚类时经常头疼的问题。我最近看到一个思路还不错,结合了距离代价函数和数学优化模型,不仅逻辑清晰,代码实现也挺好上手。你可以理解为——把每个点到质心的距离加起来,看哪个 K 值最小,那个就是最佳 K。这种做法比起盲猜或者靠经验法则,靠谱多了。而且还有个挺实用的小技巧:K 值别设太大,经验公式是k ≤ √n,用起来也比较稳。
K-means聚类算法原理与K值选择技巧
相关推荐
改进版K-means聚类算法(支持动态K值选择)
动态调整 K 值的 K-means 聚类算法,挺适合你用在空间数据里的。原来的 K-means 你应该用过,设置 K 值总是靠猜,聚类效果也容易翻车。这个改进版就聪明多了,直接用距离代价函数来算哪个 K 更合适,自动帮你选个靠谱的聚类数,效率还不错。
K-means 的 K 值问题一直是老大难,是数据本身没啥先验知识时,真不好定。这个算法通过构建一个数学模型,用距离代价函数动态判断 K 值,你就不用靠经验去猜了,聚类结果也更稳。
你可以把它用在地理空间数据上,比如遥感图像、地图数据聚类啥的。数据点带空间属性,用普通 K-means 常常忽略了空间分布特性,这一套改进方法能更好识别那些分布模式。
数据挖掘
0
2025-06-17
K-means聚类算法原理与应用
输入数据的自动聚类,用的是经典的K 均值算法,逻辑简单、上手快,蛮适合刚接触数据挖掘的你。整个流程也比较清晰,先选中心,再分组,迭代直到不变,基本就是聚类算法的套路。步骤里用的是距离函数,你可以根据场景选欧几里得或者曼哈顿,像图片聚类用欧几里得就挺顺。重点是每次更新簇中心都靠平均值算的,响应也快,代码也简单。配套资源也挺全的,不管你用MATLAB写还是想了解变种算法,相关链接都整理好了:K 均值聚类算法、基于多维数据的初始中心、K 均值源码(MATLAB),这些都能直接上手跑。如果你正好在做项目,遇到数据聚类场景,比如客户分群、图像、文本分类,都可以先用 K-means 试一把。注意初始中心选
数据挖掘
0
2025-07-01
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。
K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。
如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
别的语言也有,
数据挖掘
0
2025-07-01
K-means聚类算法原理与应用研究
K-means 的聚类思路蛮清晰,逻辑简单,实际用起来还挺顺。在做入侵检测或者数据分类时,真能省不少事。嗯,推荐几个资源给你,文章配了代码,跑一跑基本就能上手。
K-means 聚类算法的核心思想其实就像“分小组”,先随机挑几个中心点,看谁离谁最近,就先归个类。中心点再重新算,反复几轮后,聚类效果就比较靠谱了。
如果你想搞清楚原理,《详解 K-means 聚类算法》这篇写得还挺细,流程图+案例都齐,适合初学者。
要是更关注实战,比如做入侵检测,这篇关于优化 K-means 的入侵检测研究就蛮有意思,讲了怎么改进分类准确率。
动手党别错过这几个实现:Python 版本比较好懂,写法直白;Matl
数据挖掘
0
2025-06-18
K-Means 聚类程序
包含 K-Means 算法程序和所需数据集,解压缩后即可直接运行。请调整数据集文件路径以匹配本地位置。
算法与数据结构
13
2024-05-01
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
详解K-means聚类算法.pdf
K-means聚类算法是一种基于分割的无监督学习方法,将数据集分成K个互不重叠的簇,以使每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。该算法简单高效,广泛应用于数据分析和挖掘领域。详细算法步骤包括随机初始化簇中心、将数据点分配到最近的簇、更新簇中心以及迭代优化过程。其原理在于通过迭代优化达到稳定的簇分布。K-means聚类算法简明易懂,执行效率高,因此在多个领域得到广泛应用。
算法与数据结构
16
2024-08-08
R语言K-means聚类算法
R 语言的 K-means 聚类算法,用起来真挺顺手的。语法简单,逻辑清晰,适合数据刚起步的你。kmeans()这个函数几乎一看就懂,配合像factoextra这样的可视化包,效果也直观。安装包推荐你先装好fpc和factoextra,再加上ggplot2一起用,调试聚类数量、看图都方便。聚类逻辑也不复杂:初始中心、计算距离、更新再分配,反复几轮,直到结果稳定。哦对了,记得标准化下数据,用scale()就行,能避免变量尺度影响结果。不然你聚类中心再准也白搭。还有,默认欧式距离,适合连续变量,分类变量得换思路。整个流程在 R 里实现起来蛮流畅的,适合信用卡用户、地理数据之类的多维数据。要是想对照
算法与数据结构
0
2025-07-05