Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
数据挖掘基础
数据挖掘
25
PDF
386.53KB
2024-05-25
#数据挖掘
# 数据分析
# 算法
# 方法
# 发展
数据挖掘入门
本章深入浅出地探讨数据挖掘的核心概念,涵盖常用算法和方法,并回顾其发展历程,为读者构建坚实的基础。
相关推荐
数据挖掘基础理论
涵盖数据挖掘入门所需的理论知识,适合从事商业智能行业的人士学习。
数据挖掘
14
2024-04-30
深入探索数据挖掘基础
数据挖掘是一项综合计算机科学、统计学和机器学习的技术,从大数据中提取出有价值的信息。介绍了数据预处理的重要性,包括数据清洗、数据集成、数据转换和数据规约等关键步骤。此外,详细讨论了数据挖掘中的分类、聚类和关联规则学习等核心任务,以及特征选择和监督/无监督学习策略。最后,提及了集成学习、评估与验证方法以及常用的数据挖掘工具和技术。《数据挖掘导论》适合初学者,为他们提供理论与实践并重的学习体验。
数据挖掘
8
2024-08-29
数据挖掘基础教程
本教程涵盖数据挖掘基本概念,包括描述性和预言性挖掘,以及常用算法。
数据挖掘
7
2024-04-30
数据挖掘基础教程
数据挖掘基础教程涵盖了数据挖掘导论、数据预处理、定性归纳、分类与预测、关联挖掘、聚类分析以及复杂数据挖掘等内容。
算法与数据结构
13
2024-07-16
网络数据挖掘课件数据挖掘基础与应用
网络数据挖掘的课件,挺实用的,了数据挖掘的一些基本概念和技巧,内容是全英文的,适合英语不差的同学。课程的内容从 1 到 10 都有,唯一的遗憾是少了个第 9 课。由阮树骅老师授课,风格清晰易懂。如果你正在学习数据挖掘,或者想深入了解这个领域,拿这份课件来参考是个不错的选择。 如果你还没有接触过数据挖掘,可以从基本的课件开始,掌握基础概念和常见的算法。数据预、分类、聚类这些内容可以算是数据挖掘的核心,你可以通过这份课件慢慢积累经验,逐步进入更复杂的算法应用。 提醒一下,内容全英文,会稍微有点挑战,不过对于想提高英语水平的同学,反而是个加分项哦。
算法与数据结构
0
2025-06-13
数据挖掘基础及应用指南
数据挖掘是一种从海量数据中提取有价值知识的过程,结合了统计学、计算机科学和机器学习等领域的技术。在本“数据挖掘课件”中,我们将深入理解数据挖掘的核心概念、方法和工具。数据挖掘的主要目标是发现隐藏在大量数据中的模式、关联和规律,这些发现可以用于预测、分类、聚类和异常检测等多种任务。 数据挖掘的任务分为两类:描述性挖掘和预测性挖掘。描述性挖掘聚焦于总结和解释数据的主要特征,而预测性挖掘则致力于对未来趋势或事件进行预测。 在流程上,数据挖掘首先涉及数据预处理,这包括数据清洗、去除异常值和空缺值,数据转换,以及数据规范化,以便数据更适合分析。接下来,我们将学习常见的数据挖掘方法: 关联规则学习:用于
数据挖掘
7
2024-10-31
数据挖掘基础导论与应用
如果你对数据挖掘感兴趣,这本《数据挖掘导论》绝对值得一看!它了从数据中发现模式的基本方法,结合了机器学习、统计学和数据库管理等技术。书中不仅有理论,还通过习题你巩固理解,真的挺实用。比如,书里提到的预测建模,它就是用历史数据来预测未来的趋势,比如股票价格。或者像异常检测,就是通过建立“正常”模式来发现数据中的异常情况,像监控心率异常之类的应用。想深入了解数据挖掘,书中的这些基础内容可以帮你更好地理解和应用哦。
数据挖掘
0
2025-06-15
基础数据挖掘技术的PPT
数据挖掘是一门交叉学科,涵盖统计学、数据库管理和人工智能,从海量数据中提取模式、关联、趋势、异常和结构,以预测和解释数据行为。技术进步推动了数据挖掘在信息化社会中的关键作用,尽管自动化程度有限,但已成为各行业决策支持的重要工具。预测、描述、关联分析、序列模式挖掘、分类、聚类和异常检测是其主要技术方法。数据挖掘领域自1989年的IJCAI会议追溯,经过KDD会议和专业学会的推动,软件如WEKA、RapidMiner、SPSS Modeler及大数据平台如Hadoop、Spark也促进了其广泛应用。
数据挖掘
14
2024-08-31
数据挖掘的统计学基础
数据挖掘的统计学基础 这本课件深入浅出地从统计学的视角探讨了数据挖掘的核心概念和方法。它将复杂的统计学理论与实际的数据挖掘应用相结合,为读者理解数据挖掘的本质提供了清晰的框架。 主要内容包括: 探索性数据分析 统计推断与假设检验 预测模型构建 模型评估与选择 适用人群: 对数据挖掘感兴趣,并希望了解其背后的统计学原理的学生、研究人员和从业者。
数据挖掘
13
2024-05-20