数据挖掘是一门交叉学科,涵盖统计学、数据库管理和人工智能,从海量数据中提取模式、关联、趋势、异常和结构,以预测和解释数据行为。技术进步推动了数据挖掘在信息化社会中的关键作用,尽管自动化程度有限,但已成为各行业决策支持的重要工具。预测、描述、关联分析、序列模式挖掘、分类、聚类和异常检测是其主要技术方法。数据挖掘领域自1989年的IJCAI会议追溯,经过KDD会议和专业学会的推动,软件如WEKA、RapidMiner、SPSS Modeler及大数据平台如Hadoop、Spark也促进了其广泛应用。
基础数据挖掘技术的PPT
相关推荐
数据挖掘技术简介PPT
数据挖掘技术简介PPT,包括基础的概念和应用场景。
数据挖掘
12
2024-07-13
对比数据挖掘技术.ppt
探讨了对比数据挖掘的相关概念、方法及其应用。
数据挖掘
18
2024-07-23
详细描述数据挖掘技术的PPT
数据挖掘是一项利用技术从海量数据中提取隐藏模式和知识的方法,起源于人工智能的研究,特别是在数据库知识发现(KDD)领域。随着信息量的迅速增长,传统的数据库系统虽然能有效处理数据存储和查询,但无法揭示数据间的关系或预测未来的趋势。因此,数据挖掘技术应运而生,从海量数据中寻找有价值的、未被发现的信息,支持商业决策和策略制定。数据挖掘技术包括关联规则学习、聚类分析、分类、序列模式挖掘和异常检测等多种方法,用于揭示数据中的模式,建立规则以进行分类和预测。在电信领域,数据挖掘可分析客户的消费习惯,提供个性化服务或预测客户流失可能性。数据挖掘过程包括数据预处理、选择适当算法进行挖掘、评估发现的模式的意义和
数据挖掘
11
2024-07-18
数据挖掘 PPT 课件
附带数据挖掘英文课件 PPT,欢迎下载。
数据挖掘
18
2024-05-01
数据挖掘基础
数据挖掘入门
本章深入浅出地探讨数据挖掘的核心概念,涵盖常用算法和方法,并回顾其发展历程,为读者构建坚实的基础。
数据挖掘
14
2024-05-25
数据挖掘分析PPT分享
王灿老师的这份数据挖掘分析PPT深入浅出,解析透彻,非常值得学习和参考。现将这份宝贵的资料分享给大家,希望对大家有所帮助!
数据挖掘
15
2024-04-30
数据挖掘技术
基于实例学习[1]是一种重要的学习范式。k-最近邻(简称k-NN)[2]是一种代表性的基于实例的分类器,它将未标记的实例分配给其k个最近邻中最常见的类。由于其简单和有效性,k-NN分类器已被广泛应用于模式分类领域。大多数基于实例的分类器使用给定的度量来衡量未标记实例与其邻居之间的相似性。当属性为数值时,归一化欧氏距离是衡量实例相似性的自然度量标准。然而,对于许多应用程序来说,可能不存在一些自然的度量概念。在这种情况下,许多设计用于处理数值属性的基于实例的分类器将面临困难,并且通常使用更简单的度量来衡量分类属性值之间的距离。尽管这些简单的度量在某些情况下表现良好,但在其他情况下可能表现不佳。
数据挖掘
18
2024-07-18
数据挖掘技术统计学基础指南
数据挖掘技术是现代信息技术领域的重要组成部分,而统计学则是数据挖掘的基础工具之一。对于初学者而言,理解并掌握统计学的基本概念和方法至关重要。在本专题中,我们将专注于两个关键的统计量——均值和中位数。它们是描述性统计中最常见的度量,用于刻画数据集的一般特征。
均值
均值,通常称为平均数,是数据集中所有数值相加后的总和除以数据的数量。它是衡量数据集中趋势的一个中心位置。在处理大量数据时,均值可以帮助我们了解数据的“平均水平”。
计算公式:
$$\text{均值} = \frac{\sum \text{所有数值}}{\text{数据个数}}$$
然而,均值对异常值较为敏感,一个极端的数据点可能显
算法与数据结构
8
2024-10-25
数据挖掘指南(书籍+PPT)
全面涵盖数据挖掘的所有理论和实践知识点,包含大量综合示例和图表。为授课者提供教学资源,包括习题解答和完整幻灯片。仅需具备基本统计或数学背景,无需数据库知识。涵盖的主题包括分类、关联分析、聚类、异常检测和避免错误发现。
算法与数据结构
15
2024-05-13