为图机器学习任务提供丰富算法的Python库
图机器学习算法库graphkit-learn
相关推荐
机器学习算法1学习脑图
相对粗略的脑图,记录了第一天学习机器学习算法的思路,结构虽然不复杂,但对刚入门的你来说还是挺有参考价值的。内容覆盖了像分类、回归这些基础算法,适合做个小总结或者快速回顾。
手绘风格的脑图,重点思路比较清晰。像是把书上学到的东西做了个可视化,对理解算法结构挺有。比如你在看SVM或逻辑回归时,可以快速跳转到相关节点做联想。
推荐几个搭配阅读的资源,像这个graphkit-learn,是个挺不错的图机器学习库;还有机器学习算法实战,里头不少案例代码,照着练效果更好。
如果你想系统捋一遍机器学习的分类,可以看看机器学习算法简介及分类这篇;顺手还可以对比下PPT 版分类算法对比,图表一目了然。
使用建议
算法与数据结构
0
2025-07-05
机器学习库 scikit-learn
scikit-learn 是一个流行的机器学习库,它提供了各种算法,例如分类、回归和聚类,使其成为进行机器学习分析的宝贵工具。该库基于 Python 语言构建,并与 NumPy 和 SciPy 等其他流行的科学计算库集成。
算法与数据结构
15
2024-05-25
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
18
2024-05-25
深入探索scikit-learn的机器学习技能(PDF下载)
英文原版,涵盖了深入探索scikit-learn的机器学习技能。
算法与数据结构
12
2024-07-16
机器学习算法简介及分类
机器学习的发展中,有一条被称为“没有免费的午餐”定理。简单来说,它指出没有一种算法能够解决所有问题,尤其是在监督学习领域。
算法与数据结构
16
2024-07-17
深入理解机器学习算法
本资源涵盖线性回归、Logistic回归、一般回归、K-means聚类分析、独立分析、线性判别分析、增强学习、混合高斯模型和EM算法的学习笔记,并持续更新。
算法与数据结构
27
2024-07-18
经典机器学习分类算法详解
将详细介绍机器学习分类算法的相关内容:1. Python及其机器学习库的安装方法;2. 数据库中数据的获取与处理技巧;3. 对数据库中数据应用多种机器学习算法进行分类预测,并比较它们的准确性;4. 最终选定最优算法进行最终预测。
算法与数据结构
9
2024-07-25
分类算法对比-机器学习 PPT
比较 Kotsiantis 等人 (2007) 和 Hastie 等人 (2009) 的分类算法
阐述算法原理、优缺点以及适用场景
算法与数据结构
14
2024-05-25
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
17
2024-05-01