近年来,云存储和云计算技术的发展使得电信行业在数据挖掘方面有了新的应用可能性。随着数据量的急剧增加,云计算为电信运营商提供了高效管理和分析这些海量数据的解决方案。
CSDN论文分析云存储与云计算在电信业务中的数据挖掘应用
相关推荐
电信业数据挖掘用户分析
整体用户包括正常用户和预警用户,细分为高价值和低价值用户。预警用户按价值高、中、低进行分级,同时根据离网倾向和协议到期月份进行分层和分期。用户预警分为高预警、中预警、低预警和无预警。协议捆绑用户根据剩余期限划分为≤3个月和>3个月。共计27个基础分组,实际应用中可选择部分内容或整合部分分组。用户细分建议依据具体需求进行调整。
数据挖掘
12
2024-07-12
电信业数据挖掘策略与渠道匹配分析
策略和渠道匹配建议举例
高价值协议快到期用户群
维系经理-捆绑型策略:客户续约策略
入网不足半年短信-优惠型策略:话费优惠等增值业务
费高于平均水平用户群
电子渠道-粘滞型策略:推广数据业务等
维度分类:- 维度一:分级- 维度二:分层- 维度三:分期- 维度四:分类- 维度五:分群
对于不同细分群体,其维系策略匹配和渠道选择应根据实际情况进行差异化设计:- 高预警级别用户:由维系经理外呼执行;- 中预警级别用户:根据各区实际渠道资源,外呼和短信渠道协同执行;- 低预警级别用户:采用短信渠道执行挽留活动。
针对协议捆绑到期月份:- 在3个月以内的用户群,适合采取续约捆绑挽留策略;-
数据挖掘
12
2024-11-03
云计算与数据挖掘的应用案例
随着云计算和数据挖掘技术的发展,各行各业开始积极探索其应用。以下是一些关键头文件示例:start_time, date, 开始时间 imsi, VARCHAR(10), IMSI calling, VARCHAR(10), 用户号码 user_ip, VARCHAR(10), 用户IP地址 APN, VARCHAR(10), 访问方式 imei, VARCHAR(10), 终端标识号 rat, int, 2G/3G网络标识 app_type, int, 应用类型 lac, VARCHAR(10), xm Cell_ID, VARCHAR(10), xm source_ip, VARCHAR(1
数据挖掘
7
2024-09-13
云计算与数据挖掘的起源
云计算的发展史可以追溯到20世纪末,随着信息技术的快速进步,云计算逐渐成为现代数据管理和分析的重要工具。
数据挖掘
10
2024-07-15
电信行业客户流失分析中的数据挖掘应用
电信行业客户流失分析中的数据挖掘应用,非常实用,建议下载查看。
数据挖掘
10
2024-07-16
大数据与云计算在数据虚拟化中的演变
云数据及数据虚拟化架构不仅将企业需要集成的数据从内部扩展到外部,还引入了关于数据和过程复制的新技术。大数据技术带来了分布式处理的益处,但也带来了数据集成上的挑战。数据虚拟化经过20年的发展和进化,已成为数据管理的重要成果,包括批处理数据集成方案(ETL)和实时数据集成方案(ESB),融合了其他数据管理技术和非结构化数据集成技术。数据虚拟化并未取代商务智能工具、数据仓库或Web服务,而是在这些基础上构建。云计算和大数据技术的发展标志着数据集成重心从关系数据库内部的小数据转向大量结构化和非结构化数据的利用,这些数据可能存储于组织内外的数据中心。
Oracle
12
2024-07-25
金融与电信行业数据挖掘应用案例分析
深入探讨数据挖掘在金融和电信行业的实际应用案例,从多个维度剖析其运作机制与实施策略,并结合具体实例阐述其带来的效益与挑战,为相关从业者提供借鉴与参考。
数据挖掘
17
2024-06-04
投影运算在汽车评估中的数据挖掘应用
投影运算是数据库中的一种操作,通过选择特定属性组合来创建新的关系。这种技术在汽车评估中扮演着重要角色,帮助分析车辆特征及其评估价值。
数据挖掘
11
2024-08-13
电信行业中Clementine软件的数据挖掘应用
在当前信息爆炸的时代,数据挖掘已成为各行各业,尤其是电信行业不可或缺的重要工具。\"电信CAT\"是专为电信行业设计的数据分析和挖掘应用,基于SPSS公司的Clementine软件。Clementine是一款强大的数据挖掘和预测分析平台,广泛应用于市场研究、风险管理、客户关系管理等多个领域。其直观的图形用户界面和强大的统计功能,使得非专业统计人员也能进行复杂的数据分析。支持多种数据源,包括数据库、Excel表格、文件等,并提供丰富的数据预处理、建模、评估和可视化功能。通过对海量的通话记录、用户行为、服务使用情况等数据进行深度分析,企业能够实施客户细分、流失预测、消费模式分析、网络优化和欺诈检测
数据挖掘
13
2024-07-17