该项目选择了股票投资管理网站作为信息系统,提供实时价格、历史数据、新闻报道等。使用数据挖掘技术进行基本分析和投资建议。项目涵盖爬取和解析Yahoo Finance、Reuters和Twitter数据(使用Java和twitter4j),采用J2EE和Struts-2框架的Web界面,结合jQuery的highstocks库显示技术图表。通过数据库集成和数据清洗,进行特征选择并应用线性回归、SVM和朴素贝叶斯分类算法,生成详细的市场分析和投资建议。
股市推荐系统基于数据挖掘的股票投资管理网站
相关推荐
基于数据挖掘的量化投资技术与应用
本书系统阐述数据挖掘技术在量化投资领域的应用。内容涵盖数据挖掘基础知识、核心技术方法及量化投资实践。
首先,本书剖析数据挖掘与量化投资的内在联系,阐明数据挖掘的概念、流程、内容及常用工具。
其次,深入讲解数据挖掘的核心技术方法,包括数据准备、数据探索、关联规则、数据回归、分类、聚类、预测、诊断、时间序列分析、智能优化等,并结合具体案例阐述其在量化投资中的应用。
最后,本书聚焦数据挖掘技术在量化投资中的综合应用,以统计套利、配对交易、程序化交易等为例,详细介绍策略挖掘、优化及系统构建方法。
数据挖掘
14
2024-05-29
推荐系统数据挖掘课题
利用协同过滤算法,在 Eclipse IDE 中使用 Java 8 语言实现音乐推荐系统。
数据挖掘
16
2024-04-30
数据挖掘助推量化投资
利用数据挖掘技术,挖掘数据背后的价值,为量化投资提供科学依据和策略支撑。
数据挖掘
20
2024-05-01
股票预测中数据挖掘的应用
数据挖掘在股票分析预测方面发挥着重要作用,通过分析大量数据来预测股市走势。
数据挖掘
8
2024-07-28
利用股票指数简化投资组合模型
本节介绍利用股票指数对投资组合模型进行简化的方法。通过线性回归,可以找出股票收益与股票指数之间的线性关系。根据该线性关系,可将股票收益表示为股票指数的线性函数。该方法可以避免协方差矩阵的计算,从而简化模型。
算法与数据结构
17
2024-05-15
数据挖掘推荐书目
数据分析
数据挖掘
11
2024-05-25
Weka优秀的数据挖掘工具推荐
Weka是一款出色的数据挖掘工具,支持多种数据挖掘算法,包括聚类和分类等功能。
数据挖掘
9
2024-07-16
设计装置基于APP平台与数据挖掘的分析推荐方法
这份文档聚焦于如何在APP平台上运用数据挖掘技术进行分析和推荐。APP平台是指用于开发、发布和管理移动应用程序的软件框架,包括iOS的App Store和Android的Google Play。数据挖掘是从大量数据中发现有价值信息的过程,结合统计学、机器学习和数据库技术,通过预处理、模式识别、关联规则学习等手段将数据转化为结构化知识。在APP环境中,数据挖掘可应用于用户行为分析、偏好预测和个性化推荐,通过分析用户数据实现更精准的推荐建议。
数据挖掘
11
2024-07-18
基于数据挖掘的入侵检测系统
数据挖掘技术与关联规则算法结合,构建入侵检测系统模型。模型通过分析历史入侵数据,提取关联规则,实现入侵事件的检测与预测,提升入侵检测的效率与准确性。
数据挖掘
20
2024-05-26