大数据分析平台总体架构:数据管控层电商实践方案
数据管控层电商大数据实践方案
金融数据管控体系包含:- 组织架构- 评价与考核- 管控流程- 管控平台
数据标准管理数据质量管理元数据管理工作流管理
组织- 数据与信息标准化委员会- 数据管理人- 数据所有人- 数据生产人- 数据使用人- IT支持团队
考核指标- 责任评价标准- 执行评价政策- 执行评价标准
数据类型- 数据格式- 业务分类
数据质量- 真实性定义- 及时性定义- 完整性定义
元数据- 技术元数据- 流程评价与考核流程- 考核指标- 建立/维护流程标准- 建立/维护流程组织- 建立/维护流程评价与考核- 业务含义一致性定义
数据认责平台- 安全等级- 权限限定
业务元数据管理
Hadoop
15
2024-05-20
大数据分析平台总体架构-电商大数据实践设计方案(详细版)
大数据分析平台总体架构——数据访问层
即席查询:通过即席查询工具或手工书写SQL语句,完成业务信息的即席查看。
多维分析:从多个维度灵活组合对目标值进行分析,常见功能包括上下钻取、透明钻取、旋转、分页、层钻、跨维钻取等。
主动问题发现:通过事件触发、规则匹配等方式发现企业运营中的问题,通过手机、邮件等方式报警。
决策层管理层业务人员即席查询静态报表多维分析仪表盘挖掘预测
仪表盘:通过仪表盘及其它展现方式对企业关键绩效指标进行展示,为领导层决策提供直观的数据支持。
静态报表:按照预先定义格式,批处理报表,在线查询报表等。
Office集成:将分析应用嵌入到Office界面中,利用Office的方
Hadoop
14
2024-07-12
电商大数据实践:数据质量管理框架构建
电商大数据实践:数据质量管理框架构建
数据质量是构建可靠大数据分析平台的关键。以下框架概述了提升和管理电商数据质量的流程:
1. 数据质量要求确认
与业务需求和数据标准相符,明确定义数据质量要求。
2. 数据质量考评
制定量化评价指标,评估数据质量。
识别数据质量问题,如不一致、不完整、不准确等。
3. 数据质量提升
数据补录: 补充缺失数据。
手工修正: 人工纠正错误数据。
自动修正: 开发程序自动修复数据问题。
4. 数据质量监控
持续监控数据质量,识别潜在问题。
定期进行数据质量检查,生成分析报告。
数据质量管理框架的关键要素:
业务规则
数据一致性
数据完整性
数据唯
Hadoop
15
2024-04-30
金融大数据平台技术规范
为满足金融行业对海量数据存储、处理和分析的需求,构建安全、稳定、高效的金融大数据平台,特制定本技术规范。
一、架构设计
平台应采用分布式架构,具备高可用性、可扩展性和容错性,支持弹性伸缩和动态资源调度,以应对金融业务快速增长和数据量激增的挑战。
二、数据存储
平台需支持多种数据存储类型,包括关系型数据库、NoSQL数据库、分布式文件系统等,满足结构化数据、半结构化数据和非结构化数据的存储需求。同时,应具备数据分片、数据压缩、数据加密等功能,保障数据安全和存储效率。
三、数据处理
平台需提供高效的数据处理能力,支持批处理、流处理、交互式查询等多种数据处理模式,并提供丰富的数据处理算子,满足数据清
算法与数据结构
13
2024-06-30
大数据分析平台总体架构——数据存储层的设计与实施
在电商大数据实践中,企业内外部的非结构化和半结构化数据被采集并存储,经过结构化处理后,最终得到用于数据模型的结构化数据。数据按照HDFS文件存储,并建议保留1年。平台包括集市区、沙盘区、增值产品区、主题区和归档区,支持批量作业访问。少量高级业务人员利用MapReduce分布式计算进行大数据分析,包括文本检索、语义分词、图像识别和音频识别。与主题区和贴源区形成Hadoop集群(HDFS),保证无单点故障,实现全天候运行。平台还支持历史数据查询和归档,使用Hive提供查询服务。另外,独立的Hadoop集群(HDFS+Hive)同样具备高可用性,保证数据按照归档规则存储,支持历史数据的有效管理。
Hadoop
13
2024-08-09
电商大数据实践大数据分析平台总体产品框架设计与实现方案详解
在大数据分析平台的设计中,结合非结构化和半结构化数据管理分析,采用X86 MPP集群和Hadoop集群等技术,实现了京东业务系统的结构化数据计算和沙盘演练功能。此外,还包括数据交换平台、实时分析平台以及历史归档查询平台等多个关键组件,全面支持大数据区的管理和应用。
Hadoop
12
2024-07-16
京东金融大数据分析平台总体架构演示文稿
京东金融大数据分析平台的整体架构演示文稿,可供架构设计参考。
Hadoop
9
2024-07-16
电商大数据分析平台演进路线:实现与设计方案
电商大数据分析平台演进路线
本方案以电商大数据实践为背景,详细阐述大数据分析平台的演进路线、实现步骤与设计方案。
第一阶段:基础平台搭建 (2013年)
以基础平台搭建为主,配合初期业务开展。
应用建设从客户信息管理、风险管理和运营管理三方面开展。
搭建大数据处理平台和实时分析平台。
应用方面开展实时分析和数据产品封装。
开展客户信息管理、信用风险评级和业务统计分析三类应用建设。
开展贴源数据整合,初步建立企业级数据视图。
实现对管理分析类应用和实时分析类应用的支撑。
规划数据管控蓝图,初步实施数据质量和技术元数据管理。
第二阶段:深化分析体系 (2014年-2015年)
全面开展内部管
Hadoop
19
2024-05-21
京东金融大数据分析平台
海量数据时代,数据分析需求紧迫。京东金融构建大数据分析平台,助力企业有效利用数据实现精准决策。
算法与数据结构
12
2024-05-13