在基于构件的软件开发过程中,检索和提取满足用户需求的构件是当前研究的重点。为优化构件库的效率,主要集中在提升构件检索和理解效率。采用基于拥挤因子改进的数据挖掘蚁群算法,以优化构件的复用规则,提高复用者对所需构件的准确选取。实验证明,该方法的构件复用规则准确率达到75.3%,显著优于传统的Apriori算法和基础蚁群算法,为构件检索和选取提供了有效的决策支持。
基于数据挖掘的构件检索优化方法
相关推荐
数据挖掘与信息检索初探
初步了解数据挖掘的基本概念、功能、目标和方法,探索信息检索的实质。
数据挖掘
21
2024-07-14
基于数据挖掘的模块评估新方法
随着软件工程的发展,评估软件产品变得日益重要。传统的主观经验和有限数据集评估方法准确性有限。为解决这一问题,尹云飞等人提出了一种创新的基于数据挖掘的模块评估新方法,采用模糊聚类技术提高评估精确度和有效性。
数据挖掘
13
2024-09-24
基于R语言的数据挖掘方法与应用
随着数据挖掘技术的快速发展,R和Python等开源软件逐渐成为热门工具。然而,对于初学者而言,这些软件的学习曲线较为陡峭,如何将理论知识应用于实际业务场景也是一大挑战。
本书以解决实际业务问题为导向,系统介绍基于R语言的数据挖掘方法,并结合具体案例讲解如何构建稳健的数据挖掘模型。
与Python相比,R语言在统计分析、计量经济学等领域更具优势,并且拥有广泛的用户基础。R语言不仅可以与Oracle、SQL Server等数据库软件结合使用,突破内存限制,还能够与Hadoop、Spark等大数据分析平台进行连接,扩展其应用场景。
数据挖掘
10
2024-06-30
基于轻量数据挖掘的数据库锁表优化方法研究
为了保证数据库系统在不同的负载情况下,始终提供强大的事务处理能力,必须对数据库系统进行性能优化。依赖于DBA来分析性能数据然后进行系统优化,在系统越来越复杂、负载持续波动的情况下是很困难的。数据库系统的自我优化是解决系统性能问题的前景性技术。针对数据库锁表管理,提出了一种基于轻量数据挖掘的优化方法,通过对性能数据的学习,建立一个神经网络预测器,能够根据锁表参数预测系统性能。在系统运行过程中,自我优化模块不断监控性能数据的变化,通过规则引擎选择需要优化的参数,并利用预测器获得参数调整的幅度大小,完成参数设置以提高系统性能。实验证明,该方法使数据库系统性能获得了近16%的提升。
数据挖掘
15
2024-10-31
数据挖掘的鲁棒性方法
数据挖掘的鲁棒性方法
概述
在实际应用中,数据往往包含噪声、异常值和不完整信息。鲁棒数据挖掘致力于开发能够在这些挑战下仍然表现良好的算法和技术。
关键挑战
噪声和异常值: 噪声会扭曲数据模式,而异常值可能导致错误的结论。
不完整数据: 缺失值会降低数据质量,影响分析结果。
数据分布的变化: 数据分布随时间或环境变化可能导致模型性能下降。
鲁棒数据挖掘技术
数据预处理: 检测和处理噪声、异常值和缺失值的技术,例如数据清洗和数据插补。
鲁棒统计方法: 使用统计方法来减少异常值的影响,例如中位数和四分位数。
集成学习: 结合多个模型的结果来提高整体鲁棒性。
异常检测: 识别数据中的异常值,并采
数据挖掘
15
2024-04-30
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后
算法与数据结构
16
2024-05-23
基于数据挖掘技术的实时能耗监测方法(2012)
针对常用的能耗监测方法存在的实时性和智能性不足,提出了一种新的实时能耗监测方法,采用数据挖掘技术。通过聚类分析历史能耗数据,识别能耗模式集合,并建立能耗模式判定树。在实时监测过程中,动态采集能耗数据进行模式匹配,并进行离群点分析,有效判断能耗是否异常。本方法在某综合大楼能耗数据实验中验证了其有效性。
数据挖掘
9
2024-07-18
基于云平台的并行数据挖掘方法探索
近年来,随着技术的进步和数据量的急剧增加,业界已经开始利用云平台处理海量高维数据。将各种异构系统仿真为一个统一的系统,特别是在Hadoop环境中进行数据挖掘时,面临着数据模型的全局性、HDFS文件的随机写操作以及数据生命周期短等挑战。为了解决这些问题,提出了基于Hadoop的高效数据挖掘框架,利用数据库模拟链表结构管理挖掘出的知识。该框架支持树形结构、图模型的分布式计算方法,实现了统计算法如Yscore分箱算法、决策树和KD树的建树算法,并利用Vega云对Hadoop集群进行了仿真。实验结果显示,该框架和算法在实际应用中具有可行性,也具备拓展至数据挖掘以外领域的潜力。
数据挖掘
11
2024-10-13
基于视角的空间数据挖掘方法 (2006年)
为了满足用户在不同场景下对空间数据挖掘的个性化需求,该研究提出了空间数据挖掘视角的概念。该视角能够在明确具体数据挖掘需求的基础上,利用相应的数据挖掘算法,从海量空间数据中提取不同粒度的空间知识。研究首先深入探讨了空间数据挖掘视角的内涵和外延,进而提出了一系列相应的算法,最后将该视角应用于滑坡监测数据的实际挖掘中,取得了令人满意的效果。
数据挖掘
17
2024-05-29