为了解决实际研究中模糊数据设定不精确的难题,采用了模糊数学方法。模糊度的引入强调了数据变量模糊化的重要性,定义了模糊变量及其时间序列,并通过计量经济学和数据挖掘案例展示了模糊化处理的必要性。研究表明,许多数据确实具有模糊特性,而模糊变量时间序列的应用有助于建立更客观的计量模型和进行时间序列挖掘。模糊变量时间序列的提出对计量经济学和数据挖掘领域具有重要的参考价值。
模糊数学在时间序列分析中的应用及其实证研究(2010年)
相关推荐
数学建模中的时间序列分析
探讨时间序列分析的基础知识,参考了《应用时间序列分析》的前三章内容。使用Python进行建模,适合数学建模中对时间序列分析的初学者快速入门与实际应用。文章简单易懂,侧重于实际操作。
统计分析
9
2024-07-17
模糊时间序列模型在重庆短期气候预测中的创新应用
本研究引入模糊时间序列模型,基于重庆34个地面气象观测站的逐日观测资料(1971-2007年)和重庆市旱涝灾害监测预警决策服务系统计算的干旱指数、洪涝指数等数据,对2001-2007年重庆市城口县1月降水、1月平均气温以及春季旱情指数进行了预测分析。研究还比较了模型预测结果与实测值,并与加权集成、人工神经网络集成、数据挖掘集成等模型进行了精度分析。结果显示,模糊时间序列模型在短期气候预测中表现出良好的预测能力和稳定性。
数据挖掘
11
2024-07-29
奇异谱分析(SSA)方法在时间序列预测中的应用
想做时间序列预测?用奇异谱方法(SSA)试试吧!这是一种纯数学的时间序列向后预测方法,简单易用,又能给出不错的预测效果。我自己也试过,做了一些测试,结果还蛮惊艳的。不过,需要注意的是,它对非平稳序列和长时序的预测效果还不完全确定,所以你可以在自己的项目中验证一下,看看是否适合。毕竟,方法再好,也得合适才行!我整理了实现代码,感兴趣的可以拿去试试。另外,如果你对时间序列预测有兴趣,下面这些资源也有。你可以看看:时间序列预测法、MATLAB 时间序列预测方法概述,它们都挺实用的。
算法与数据结构
0
2025-06-17
数学建模及其在MATLAB中的应用
数学建模在教学方面具有重要意义,特别是MATLAB工具在此过程中的应用极大地促进了学生对数学建模的理解与掌握。
Matlab
11
2024-08-03
时间序列模拟ARFIMA模型在MATLAB中的应用
本代码利用自回归分数积分移动平均(ARFIMA)模型进行时间序列模拟,该模型结合了ARIMA(自回归积分移动平均)和ARMA(自回归移动平均)的特点。ARFIMA模型允许使用非整数差分参数,特别适用于长记忆时间序列的建模。通常情况下,该代码执行ARFIMA(p,d,q)模型的模拟,其中d表示差分参数,p和q分别表示自回归和移动平均的阶数。
Matlab
14
2024-09-27
多变量时间序列的模糊决策树挖掘研究
针对当前时间序列决策研究方法存在的问题,提出了多变量时间序列模糊决策树挖掘方法,并通过实验分析验证了该方法能够有效捕捉多变量时间序列子序列的形态及后期趋势或状态的决策信息。
数据挖掘
13
2024-07-17
进化算法在时间序列分割中的距离度量优化研究
时间序列分割是对时间序列数据进行分析和挖掘的重要方法之一。在给定标准模式的情况下,进化算法能够根据这些模式优化距离度量,以提高分割效果。
数据挖掘
7
2024-08-08
基于时间序列的模糊循环聚类
基于时间序列的模糊循环聚类算法提供了对历史过程数据进行有效分析的工具。
Matlab
14
2024-05-31
支持向量机在金融时间序列预测中的应用
支持向量机, 一种基于统计学的新型机器学习和数据挖掘技术, 遵循结构风险最小化原则。金融时间序列数据通常具有非平稳性、复杂性、非线性以及噪声干扰, 传统预测方法难以取得令人满意的效果。本研究提出一种基于支持向量机的金融时间序列预测方法, 并将其应用于上证180指数预测。实验结果表明, 支持向量机方法能够有效地建模动态金融时间序列, 并取得良好的预测效果。
数据挖掘
20
2024-05-12