数据挖掘从海量数据中提取有价值信息,满足特定需求。2000年,数据挖掘市场规模约7.5亿美元,预计未来五年年增长率达32.4%,亚太地区为26.6%。专家预测,数据挖掘将在未来5-10年在中国形成新产业。
数据挖掘解析
相关推荐
数据挖掘算法解析
数据挖掘常用算法原理
本资源解析数据挖掘领域常见算法,例如决策树、聚类等,阐述其原理和应用。
决策树: 通过树状结构进行决策,每个节点代表一个属性测试,每个分支代表测试结果,最终叶子节点代表决策结果。
聚类: 将数据集中的对象根据相似性进行分组,同一组内的对象彼此相似,不同组之间的对象差异较大。
数据挖掘
13
2024-05-21
Python数据挖掘案例解析
本书深入剖析基于 Python 的数据挖掘案例,提供从理论到实践的全面指导。书中涵盖经典案例分析与代码实现,帮助读者掌握数据挖掘核心技术,无论Python基础如何,都能从中获益。
数据挖掘
15
2024-06-04
数据挖掘技术与应用解析
数据挖掘技术,挺有意思的,尤其是它背后那些经典的理论和技术。你如果刚接触数据挖掘,会觉得有点复杂,但其实这些技术在实际应用中还是蛮实用的。比如,你可以通过一些算法模型发现隐藏在数据中的规律,进而做出一些预测或决策。说到经典算法,像聚类、分类这些,都是常用的,挺好用的。数据挖掘的工具和框架也不少,像 Python 的 scikit-learn 就适合入门。嗯,,学习这些技术时要多做实践,不要只看理论。
数据挖掘
0
2025-06-24
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。 t通过时间序列搜索出重复发生概率较高的模式,强调时间序列的影响。 例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉; 在所有购买了彩色电视机的人中,有60%的人再购买VCD产品; 在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
11
2024-07-15
Web数据挖掘的深入解析
Web数据挖掘简介
Web数据挖掘是指从Web数据中提取有价值的信息,通过分析Web页面、用户行为等数据,揭示潜在的模式和规律。它在当今的信息化社会中具有广泛的应用,如精准营销、个性化推荐和社交媒体分析等。
Web数据挖掘的核心流程
数据收集:获取所需的Web数据资源,包括结构化数据和非结构化数据。
数据预处理:对原始数据进行清洗、格式化和转换,以适应挖掘需求。
数据分析:使用统计分析和机器学习方法挖掘潜在模式。
结果应用:将挖掘结果应用于特定业务场景,实现数据驱动的决策支持。
Web数据挖掘的主要应用场景
搜索引擎优化:通过分析用户搜索行为优化关键词。
个性化推荐:根据用户行为数据推荐
数据挖掘
15
2024-10-28
数据挖掘:概念与技术解析
数据挖掘的概念与技术深入解析,助你掌握数据挖掘精髓。
数据挖掘
20
2024-04-30
SPSS Modeler数据挖掘过程解析
本PDF文件详细解析了使用SPSS Modeler进行数据挖掘的步骤,指导用户从数据导入到模型创建和评估的完整流程。
数据挖掘
14
2024-05-20
数据挖掘课后习题解析
数据挖掘课后习题的解析,挺适合刚入门或者准备复习的人看。知识点分得比较细,比如属性分类、标准化方法、分箱平滑这些内容,讲得还挺明白。嗯,像Gini 值、信息增益也有例子,不光是理论,实操也有着落。
知识点 1 讲属性类型时,把定性、定量的细分说得清楚,还用了奥运奖牌、衣服尺寸这些例子来带入,挺接地气。你要是准备数据预部分的面试,这块儿可以直接拿来用。
标准化方法那一块就比较实战了,像什么小数缩放、最小-最大、Z-score这些,有具体的数据集演示,适合用在模型训练前的清洗阶段。
再比如数据分箱和平滑,它不仅说了等宽、等频怎么分,还给了平滑方式,比如取箱内平均值或边界值,你做可视化或特征工程的时
数据挖掘
0
2025-06-25
数据挖掘方法与模型解析
数据挖掘是从大量数据中提取有价值信息的一门技术,结合了多个学科的知识,如统计学、机器学习等。了解这些方法和模型对于挖掘数据背后的规律重要。SPSS是一个常用的统计工具,适合进行数据预、探索性以及建模预测,使用起来也比较简单,尤其对初学者友好。聚类是一种无监督学习方法,目标是将数据分成不同的组,常用的算法有 K-means 和 DBSCAN 等。它通常用于市场细分、客户等场景。分类则是监督学习的代表,通过已知的标签预测未知数据。常见的算法有决策树、随机森林和支持向量机(SVM),这些算法各有特点,适用于不同的数据集。遗传算法模拟生物进化的过程,能够优化特征选择和模型参数,它在复杂问题的优化中挺有
数据挖掘
0
2025-07-01