和谐OS 2图形着色是一个跨平台的应用程序,用于构建图形并在其上运行图形着色算法。您可以从以下位置下载此应用程序:Windows、Linux和macOS。图形着色是图论中重要的概念之一,在许多计算机科学应用中有广泛应用。它解决了在给定约束条件下为图的元素分配颜色的问题,特别适用于数据挖掘、图像分割、聚类和网络科学研究。顶点着色是其中最常见的应用之一,通过Welsh-Powell算法实现顶点的贪婪着色,以确保相邻顶点不具有相同的颜色。进化算法如Harmony Search模仿音乐即兴过程来解决优化问题,尽管不适用于二进制表示,但在复杂优化中展示了灵活性。
和谐OS 2图形着色进化算法与Welsh-Powell算法详解
相关推荐
进化算法概览
进化算法(EAs)是通过模拟自然进化过程寻找全局最优解的算法。它包括遗传算法(GAs)、粒子群优化(PSO)等具体实现,利用变异、交叉、选择等操作迭代优化目标函数。
算法与数据结构
12
2024-05-12
进化算法Python实现
该资源包含多种进化算法的Python实现,包括:
差分进化算法
遗传算法
粒子群算法
模拟退火算法
蚁群算法
免疫优化算法
鱼群算法
算法与数据结构
12
2024-05-21
多目标Jaya算法(MOJaya)基于SPEA2的进化优化算法
MOJaya是一种多目标优化算法,结合了SPEA2和Jaya算法的特点。
Matlab
12
2024-09-26
NSGA-II多目标进化算法
多目标优化里头,NSGA-II 算法还挺经典的,属于进化算法中的老大哥级别。它是在老版 NSGA 的基础上做了不少优化,比如非支配排序快了不少,速度快,代码也不臃肿。精英策略的引入也让好个体不容易被淘汰,结果更稳,收敛也更快。
精英策略的引入挺关键,防止了“好苗子”在迭代中被随机干掉的尴尬。举个例子,如果你在做路径规划、多目标调度这类事儿,这点能帮你节省不少调参时间。
拥挤度比较这块也蛮有意思。以前的 NSGA 要手动设置共享半径,麻烦还容易出锅。NSGA-II 直接上密度排序,你不用再关心那些参数细节,个体分布也更均匀,结果看起来就舒服多了。
资源是打包好的NSGA-II.zip,里面代码结
算法与数据结构
0
2025-06-17
Matlab 图形绘制与算法实现
这份讲义涵盖了Matlab的常用技巧,重点讲解图形绘制方法以及常见算法的Matlab实现。
Matlab
16
2024-05-24
多目标进化算法开发资源集
本资源包含MOEA-dev-matser.zip全套代码,涵盖NAGAII、NSGAIII、MOEAD-DE、MOEA-DRA、MOEAD-M2M、SPEA2-SDE、GrEA、e-MOEA等多种进化算法,并附带中文注释。提供DTLZ、WFG、ZDT、UF、MOP、MOKP等多套数据集,经过验证可直接运行,生成多种评估指标如IGD值。
算法与数据结构
18
2024-07-13
多目标进化算法的深入探究
运用反向学习模型的最新多目标进化算法,在优化问题领域取得突破性的进展。
算法与数据结构
17
2024-05-01
图着色问题回溯算法实现C++代码
图着色问题的 main.cpp 代码,思路清晰,结构简单,用的是比较常见的回溯算法。逻辑上没绕弯子,看得明白,改起来也方便。适合想要快速上手图着色算法的你,不管是刷题、做课设,还是当模板直接用,都挺合适。
main.cpp 里的实现用了回溯法,每个节点尝试不同颜色,只要不冲突就继续下一个。典型的递归套路,像数独、N 皇后问题那种思路。代码不长,核心部分就十几行,调试也方便。
实测下来,运行效率还不错,小图瞬间就出结果。配合控制台输出还能看下每一步的尝试过程,挺适合教学演示。如果你想可视化效果,下面这篇关于矢量幅度着色颤动图的文章也值得看看:点击这里。
再进阶一点的,还有Welsh-Powell
算法与数据结构
0
2025-06-13
SUEAPMatlab和Python并行进化算法套件
Matlab Hill代码存储库包含Matlab和Python类库,展示多种进化算法示例,包括多目标优化算法,作为NSGA-II学习的比较基准。该库支持并行适应性评估,适用于多核或集群计算机。
Matlab
12
2024-08-25