海洋捕食者算法(MPA)是一种受自然启发的优化算法,其设计灵感源自自然界捕食者和猎物之间的最佳捕食策略。该算法已在多个领域得到应用,包括29个测试功能的评估,CEC-BC-2017测试套件,以及在建筑节能方面的实际工程设计问题。MPA在与GA、PSO等传统算法的比较中表现出显著的竞争力,尤其是在与LSHADE-cnEpSin的竞争中获得了第二名的成绩。
海洋捕食者算法(MPA)一种新兴的优化算法-matlab开发
相关推荐
Ant Lion Optimizer (ALO)一种新兴的全局优化元启发算法-Matlab开发
Ant Lion Optimizer (ALO)模仿了自然界中蚁狮的狩猎机制,包括随机行走的蚂蚁、陷阱构建、困蚂蚁于陷阱、捕捉猎物和重建陷阱等五个关键步骤。该算法的论文来源为Seyedali Mirjalili的工程软件进展第83卷(2015年5月),页码为80-98,ISSN为0965-9978,详情请访问http://dx.doi.org/10.1016/j.advengsoft.2015.010。更多信息请见:http://www.alimirjalili.com/ALO.html。
Matlab
17
2024-07-22
Jaya一种创新的优化算法
介绍了一种简单但强大的优化算法,适用于解决有约束和无约束的优化问题。所有基于进化和群体智能的算法都是概率算法,需要共同的控制参数,如种群规模、世代数、精英规模等。不同的算法除了共同的控制参数外,还需要特定的算法参数。例如,GA使用变异概率、交叉概率和选择算子;PSO使用惯性权重、社会和认知参数;ABC使用围观蜂数、雇佣蜂数、侦察蜂数和限制数;HS算法使用和声记忆考虑率、音调调整率和即兴次数。其他算法如ES、EP、DE、SFL、ACO、FF、CSO、AIA、GSA、BBO、FPA、ALO、IWO等也需要对各自的特定参数进行优化。算法特定参数的适当调整对算法性能非常关键,而不当的调整可能导致计算量
Matlab
10
2024-09-25
探索图论算法: 一种基于 Matlab 的方法
探索图论算法: 一种基于 Matlab 的方法
本资源深入研究图论算法领域,并提供基于 Matlab 的实践方法。内容涵盖经典算法(如最短路径、最小生成树)以及网络流和匹配等高级主题。通过实际示例和 Matlab 代码实现,帮助读者掌握将理论应用于实际问题。
Matlab
20
2024-05-23
麻雀搜索算法(SSA)一种创新的集群智能优化技术
受麻雀群体智慧、觅食和反捕食行为的启发,提出了一种新的集群优化方法,即麻雀搜索算法(SSA)。
Matlab
12
2024-09-24
多目标黏菌算法MOSMA 一种基于Slime Mold的多目标优化方法-matlab开发
介绍了多目标滑模模型算法(MOSMA),这是最近开发的滑模模型算法(SMA)的一种变体,专门用于解决行业中的多目标优化问题。近年来,优化社区提出了多种元启发式和进化优化技术,用于处理这些优化问题。在评估多目标优化(MOO)问题时,这些方法通常会面临解决方案质量低下的问题,而非准确估计帕累托最优解和所有目标函数的分布。SMA方法基于实验室对黏菌振荡行为的观察而来,显示出强大的性能,通过结合最佳食物路径设计。MOSMA算法采用SMA机制进行收敛,并结合精英非支配排序方法来估计帕累托最优解。此外,MOSMA保留了多目标公式,并利用拥挤距离算子来确保所有目标的最佳解决方案覆盖范围扩展。为了验证MOSM
Matlab
9
2024-08-10
HyperLog:一种近似最优基数估计算法的分析
HyperLog 算法在基数估计领域展现出接近最优的性能。本研究深入分析 HyperLog 算法的运行机制,揭示其如何在有限的内存资源下,高效地估计大型数据集的基数。
算法与数据结构
11
2024-05-21
研究论文-一种自然聚类发现的新算法.pdf
当前的聚类方法如K-means和DBSCAN采用全局参数,难以准确发现数据的自然聚类结构。新提出的分级聚类算法CluFNC通过调整网格大小、噪声阈值和神经节点数量,能够在数据空间中精确识别内部聚类特征。该算法首先根据参数划分数据空间网格,然后利用高斯影响函数计算每个单元的场强,接着运用SOM算法对网格位置和场强进行聚类,最后通过Chameleon算法对SOM聚类得到的神经网络节点权值进行最终的数据空间聚类映射。理论和实验结果表明,该算法能有效发现数据中的自然聚类特性。
数据挖掘
16
2024-07-31
Moth Swarm Algorithm (MSA)一种新型元启发算法
Moth Swarm Algorithm (MSA):灵感来源于飞蛾对月光的导向。该算法引入了两种创新优化算子:(1)基于种群多样性的交叉点动态选择策略,利用差异向量Lévy-mutation提升侦察阶段的探索能力;(2)集成即时记忆的联想学习机制,模拟飞蛾的短期记忆,解决经典粒子群算法的初始速度问题。此代码演示了MSA在23个常用基准测试中的应用。详细信息参见Mohamed等人(2017)的研究:“使用蛾群算法的最优潮流”。
Matlab
9
2024-08-01
一种高效的桁架优化问题差分进化算法的快速实现
这段代码介绍了一种新的差分进化算法(IDE)和有限元法(FEM),用于优化桁架结构。该算法已成功应用于具有频率约束的桁架优化,并表现出快速的收敛速度和优质的解决方案。IDE简单而高效,可以轻松地应用于各种工程优化问题,只需调整代码中的目标函数和约束函数即可。有关更多IDE的详细信息,请参阅Ho-Huu V等人的论文:“使用基于自适应突变方案的改进差分进化算法优化具有频率约束的桁架结构”。
Matlab
15
2024-08-14